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Abstract
Ideal point based preference learning using pair-
wise comparisons of type ”Do you prefer a or b?”
has emerged as a powerful tool for understanding
how we make preferences which plays a key role
in many areas. Existing preference learning ap-
proaches assume homogeneity and focus on learn-
ing preference on average over the population
or require a large number of queries per individ-
ual to localize individual preferences. However,
in practical scenarios with heterogeneous prefer-
ences and limited availability of responses, these
approaches are impractical. Therefore, we intro-
duce the problem of learning the distribution of
preferences over a population via pairwise com-
parisons using only one response per individual.
In this scenario, learning each individual’s prefer-
ence is impossible. Hence the question of interest
is: what can we learn about the distribution of
preferences over the population? Due to binary
answers from comparison queries, we focus on
learning the mass of the underlying distribution
in the regions (polytopes) created by the inter-
section of bisecting hyperplanes between queried
pairs of points. We investigate this fundamen-
tal question in both 1-D and higher dimensional
settings with noiseless response to comparison
queries. We show that the problem is identifiable
in 1-D setting and provide recovery guarantees.
We also show that the problem is not identifiable
for higher dimensional settings. We propose using
a regularized recovery for higher dimensional set-
tings and provide guarantees on the total variation
distance between the true mass in each of the re-
gions and the distribution learned via regularized
constrained optimization problem. We validate
our findings through simulations and experiments
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on real datasets. We also introduce a new dataset
for this task collected on a real crowdsourcing
platform.

1. Introduction
Learning user preferences via pairwise comparison queries
of type “Do you prefer item a or b?” (Figure 1(a)) is widely
used in various applications, such as political science, to
model voters’ political preferences and to predict their vot-
ing behavior, and in recommendation systems, to model
users’ preferences for products or services (Saaty & Vargas,
2012; Fichtner, 1986; Abildtrup et al., 2006; Hopkins &
Noel, 2022; Oishi et al., 2005). Let x ∈ X ⊆ Rd be the
known feature representation of concepts (items, objects, im-
ages, choices etc.). Preference learning based on ideal point
model (Coombs, 1950; Jamieson & Nowak, 2011; Ding,
2016; Singla et al., 2016; Xu & Davenport, 2020; Canal
et al.) assumes that there is an unknown ideal preference
point u ∈ X that represents the reference point people use
for their preference judgements based on distances. When
presented a preference query, “Do you prefer a or b?”, de-
noted by Q(a, b), the answer y(a,b) is 1 if the individual
prefers the item a over b and -1 otherwise. The ideal point
model assumes that y(a,b) = 1 if the individual’s preference
point u is closer to the representation of item a, xa than
item b, xb (Figure 1(b)). That is, ||xa −u||2 < ||xb −u||2.
The goal of preference learning is to use the responses for
pairwise comparison queries from people and learn the pref-
erence point u. Once we learn u, we can predict the choices
people make between new unseen pairs. Many works on
preference learning have focused on universal model, where
the data from everyone is pooled in together to learn a single
preference point on average for the population (Green, 1975;
Johnson, 1971; Bhargava et al., 2016). However, different
individuals can have different preferences. While one can
focus on learning an individual’s preference separately, it
takes O(d log(d/ε)) queries in Rd to learn an individual’s
preference point within an ε-ball (Massimino & Davenport,
2021). This can be a prohibitively large number of queries
per individual due to cost, cognitive overload or privacy
concerns. Therefore, we introduce the problem of learning
the distribution of preferences over a population via pair-
wise comparisons using only one response per individual.
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Figure 1. (a) Example of pairwise comparison query. (b) Ideal
point model based response to a comparison query. The colorless
circles denote the known representation for items being compared
and the human denotes the unknown user preference point. (c) Ex-
ample of the regions formed by the bisecting hyperplanes between
pairs queried and mass of user preferences in different regions.

In this scenario, learning each individual’s preference is
impossible. In many applications, learning the distribution
of user preferences (Figure 1(c)) can be useful for many
downstream tasks. E.g., if an ice cream company wants to
come up with new flavors, knowing which regions of flavor
profiles have more mass is beneficial in the discovery of
new ice cream flavors. The learned distribution can thus
be helpful in various tasks ranging from finding the more
preferred items for cold-start in recommendation, testing
difference between preferences of different populations to
using the prior to efficiently learn new user preferences. We
focus on learning the mass of the underlying distribution
in the regions (polytopes) defined by the intersection of the
bisecting hyperplanes pairs of items (see Figure 1(c)). If
we could have queried O(d log d), we can localize the user
preference point to one of the regions. So, if we sample a
large number of individuals from the population and if we
can query each of them with a sufficiently large number of
queries, we can build a histogram of the underlying distri-
bution in these regions. However, querying large number
of comparison pairs per individual can be prohibitive due
to privacy issues, limited interaction of individual with the
platform, cognitive overload and cost.

Goal: Develop fundamental understanding on what we
can learn about the distribution of user preferences with
only one comparison query per individual.

Our contribution: We introduce the novel problem of learn-
ing the distribution of user preferences over the population
via pairwise comparison queries with only one response per
individual and investigate the fundamental questions of iden-
tifiability and recovery guarantees leading to the following
contributions:

• We show that the problem is identifiable in 1D setting and
is not identifiable in higher dimensional setting.

• For the 1D setting, we provide recovery guarantees for
the mass in the regions defined by the intersection of
hyperplanes at the mid-point of pairs of items used for
queries.

• For the higher dimensional setting, we propose to use

regularized recovery and provide guarantees on the total
variation distance between the true mass in each of the
regions and the estimated mass in terms of the regulariza-
tion parameter and the interplay between the true mass
and regularization.

• We provide experiments on synthetic datasets and real
datasets that validate our results and observations. We
also introduce a new dataset for this task collected on a
real crowdsourcing platform 1.

In addition to the above contributions, our work leads to
several interesting open questions regarding learning from
diverse populations in preference learning.

2. Problem Setup
Let x ∈ X ⊆ Rd denote known feature representation of
items2. Under the ideal point model (Coombs, 1950), each
individual preference is also modeled as an unknown point
in the same space. Let P ⋆ denote the unknown underlying
distribution of user preferences. Each individual l has an
unknown preference ul ∈ Rd. We assume that ul

i.i.d.∼
P ⋆. Let T denote the set of pairs of items (i, j) that are
queried. We consider pairwise comparison queries of the
form “do you prefer item i or item j?”. We assume that
the answer to the pairwise query (i, j) from an individual
l is y

(l)
ij = 1 if ||xi − ul||2 < ||xj − ul||2 and y

(l)
ij =

−1 otherwise. Note that each pair of items (i, j) in T
creates a hyperplane perpendicular at the midpoint joining
the two items. We will slightly abuse the notation and
use T to denote the set of hyperplanes as well as there
is an one-to-one correspondence between each pair and
the respective hyperplane. Let hij denote the hyperplane
perpendicular to the midpoint of the pairs (i, j) with i < j.
The intersection of these hyperplanes carve out regions in
Rd that are polytopes. LetH(T ) denote the set of partitions
of Rd that is created by the set of all hyperplanes in T . Note
that for |T | hyperplanes in Rd, |H(T )| = O(|T |d) (Buck,
1943). For each pair of items (i, j) ∈ T , let q⋆ij denote
the mass of P ⋆ on the side of xi of the hyperplane hij and
q⋆ji = 1 − q⋆ij is the mass to the other side of hij . Let
q⋆ ∈ R2|H(T )| denote the vector that stacks qij’s for the
ordered pairs (i, j) ∈ T , followed by the corresponding
qji’s. We note q⋆ is the conditional distribution of user
preferences on either side of the hyperplanes in T and can
be written as a linear combination of the mass p⋆

H(T ) in the
regions via the following linear system of equations,

Mp⋆
H(T ) = q⋆, (1)

1Codes for our methods and synthetic datasets are available
in the supplementary material. We will make the anonymized
crowdsourced dataset available to the public upon publication.

2This is a reasonable assumption, especially with the availabil-
ity of large pre-trained foundation models.
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where M is a 2|H(T )| × O(|T |d) binary matrix where in
each row, the 1’s indicate the regions that contribute to the
side of the hyperplane. Each column of M corresponds
to a region (polytope) created by the intersection of the
hyperplanes. For each pair (i, j) ∈ T , we can estimate
the mass on either side of the hyperplane hij by querying
a random sample of people. Given these estimates, the
question of interest is: can we estimate p⋆

H(T ), the mass in
the regions of intersections of hyperplanes in T induced by
the underlying distribution of preferences P ⋆?

Note that p⋆
H(T ) identifiable if it is the unique probability

vector of size |H(T )| that gives rise to q⋆. So, p⋆
H(T )

is not identifiable if there exist a p ̸= p⋆
H(T ) such that

Mp = Mp⋆
H(T ).

Figure 2. (a) Example of regions (polytopes) formed by intersec-
tion of three hyperplanes. (b) The corresponding matrix M. (c)
The corresponding graph where the regions are the nodes.
Figure 2 shows an example of partition of R2 with 3 hy-
perplanes h1,2, h3,4 and h5,6. With the enumeration of the
regions shown in the figure, we can construct the binary ma-
trix M, where the first 3 rows represent regions correspond-
ing to h1,2 towards the side of item 1, h3,4 towards the side
of item 3 and h5,6 towards the side of item 5 respectively.
Similarly, the last 3 rows represent regions corresponding to
the other side of each of the hyperplanes. We also note that
each column gives positions of the corresponding region pi

in terms of hyperplanes h1,2, h3,4 and h5,6.

3. One Dimensional Setting
We first study the problem in the 1D setting and provide
results on identifiability and recovery guarantees.

Identifiability: In 1D setting, |T | pairs creates |T |+1 inter-
vals. Measuring the fraction of mass on either side of each
of the hyperplanes in T is equivalent to measuring the cumu-
lative distribution function (CDF) of the distribution p⋆

H(T ).
The linear system of equations (1) has |T |+1 unknowns and
|T |+ 1 equations. Corresponding binary matrix M can be
written as a concatenation of two triangular matrices where
one is a lower triangular and the other is an upper triangular
matrix. E.g., 2 pairs create 3 regions and the corresponding
matrix M = [1, 0, 0; 1, 1, 0; 0, 1, 1; 0, 0, 1]. Any such
M is full column rank by construction. Therefore, the linear
system of equations q⋆ = M p has a unique solution in
terms of the true q⋆, given by p⋆

H(T ) = (MTM)−1MTq⋆.

This is summarized in the following proposition.

Proposition 1. (Identifiability in 1D) In 1D setting, the mass
p⋆
H(T ) in the regions of intersection of hyperplanes in T

induced by the underlying distribution of preferences can be
uniquely determined by only measuring the fraction of the
population on either side of each of the hyperplanes in T .

Recovery Guarantees: As we do not have access to true
q⋆, we have to learn p⋆

H(T ) from q̂ estimated by querying
pairs in T . We use the following constrained optimization
problem:

p̂H(T ) := arg minp≥0,1⊤p=1

1

2
||Mp− q̂||22.

The objective function is strongly convex and therefore
the above optimization problem is guaranteed to have a
unique solution. We provide recovery guarantees for the 1D
noiseless setting below:

Theorem 3.1. (Recovery in 1D) With probability at least
1−δ, the total variation distance between p⋆

H(T ) and the
recovered mass p̂H(T ) is bounded as follows,

TV
(
p⋆
H(T ), p̂H(T )

)
≤√

1

2

(
1+

1

|T |

)
cond(M,1)max

{√
40

n
,

√
25 log (3/δ)

n

}
,

where cond(M, 1) is the condition number of M with re-
spect to l1-norm, and n is the total number of users queried.

As the total number of users increases, total variation dis-
tance betweeen p⋆

H(T ) and p̂H(T ) goes to 0. Proof details
are available in the appendix.

4. Higher Dimensional Settings
In this section, we discuss the identifiability results and
recovery guarantees for Rd with d ≥ 2. The details of the
proofs are deferred to appendix due to space limitations.

Identifiability: Assuming items and users are supported
on Rd, with d ≥ 2, we note that the number of regions
|H(T )| created by the hyperplanes in T is of O(|T |d). So,
the linear system of equations (1) has order of magnitude
more unknowns than the number of equations. We show the
following with regards to identifiability.

Proposition 2. For d ≥ 2, the binary matrix M which of size
2|T | × O(|T |d) has rank(M) = |T |+ 1 and the solution
to the linear system of equations (1) is not unique and hence
p⋆
H(T ) is not identifiable.

Sparsity: From Proposition 2, for d ≥ 2, we cannot hope to
recover p⋆

H(T ) in general. However, M is a fat matrix and a
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natural question that arises is what if p⋆
H(T ) is sparse? That

is, if only k ≪ O(|T |d) entries of p⋆
H(T ) are non-zero. We

note that, since rank(M) = |T |+ 1, for any k > |T | + 1,
there exists at least another solution to the equation (1).
This follows from noting that the conditional distribution of
preferences on either side of each of the hyperplanes can in
fact be re-written as convex combination of a set of vectors
in R|T |+1 corresponding to the columns of M, and then
using the Carathéodory theorem which guarantees that there
always exists a solution with exactly expressed in terms of
|T |+ 1 columns (see appendix for a detailed discussion of
this).

Exploiting sparsity as a side information in signal recon-
struction (underlying distribution here) stands for one of the
fundamental approaches for a couple of decades in com-
pressed sensing (Candes & Wakin, 2008; Baraniuk, 2007;
Elad, 2010). Results from this literature, in particular, from
Theorem 2.13 in (Foucart & Rauhut, 2013), any k-sparse
solution of an underdetermined linear system of equations
is unique if and only if every set of 2k columns of measure-
ment matrix is linearly independent. Given the structure of
our matrix M in equation (1), we show the following.

Proposition 3. For the problem setting in (1), we can always
find linearly dependent k columns of M as long as k ≥ 4.

As a result, we note even with large sparsity of k ≥ 4,
uniqueness cannot be guaranteed for all k-sparse distri-
butions. For example, consider the partition in the Fig-
ure 2(a). We suppose that the solution is 4-sparse and p⋆ =
[0.3, 0, 0, 0, 0.4, 0.1, 0.2]T . Therefore, we have Mp⋆ =
q, where q = [0.4, 0.5, 0, 0.6, 0.5, 1]T . However,
q = Mp holds also for p = [0.2, 0, 0, 0, 0.3, 0.2, 0.3]T

Additionally, we make the following remark based on the
fact that M is a column-regular matrix, i.e. each column of
M has exactly the same number of 1’s.

Remark 4.1. Robust Null Space Property (RNSP) has been
proposed as a sufficient condition for basis pursuit approach
(a popular recovery algorithm in compressed sensing lit-
erature) (Foucart & Rauhut, 2013; Foucart, 2014). Re-
cently, Lotfi et al. (Lotfi & Vidyasagar, 2020) proposed
sufficient conditions for a column-regular binary matrix to
achieve RNSP, which are the best sufficient conditions for
column-regular binary matrices to the best of our knowl-
edge. According to Theorem 9 in (Lotfi & Vidyasagar,
2020), a column-regular binary matrix satisfies RNSP when
k< dL/ρ, where dL is the number of 1’s in each column
and ρ is the maximum inner product among columns. Our
binary matrix M is column-regular binary matrix with |T |
1’s in each column. Since there are neighboring regions, i.e.,
regions that has only one different coordinate, maximum
inner product among columns is |T | − 1. Therefore, RNSP
is achieved when k = 1.

Bounds on the mass in the regions: Given the non-
identifiability of p⋆

H(T ) in higher dimensions, we cannot
hope to recover it from binary answers to pairwise com-
parison queries. Here, we show that we can obtain lower
and upper bounds for each entry of p⋆

H(T ) from the es-
timated q̂ without requiring any additional assumptions.
To state these bounds, we need some notations. Let Mi,:

be the i-th row of M (corresponding to the i−th hyper-
plane) and let (ai, bi) denote the pair queried corresponding
to this row. Let q̂ai,bi denote the estimated mass on the
side of ai of the i-th hyperplane. Let Kj denote the posi-
tion of rows of M whose j-th column entry is 1. Q̂j

0 :=
[mini∈K1 q̂aibi , . . .mini∈Kj−1 q̂aibi , 0, mini∈Kj+1 q̂aibi ,
. . .mini∈K|H(T )| q̂aibi ]

T .

Proposition 4. With probability at least 1− δ, each entry of
pH(T ) can be bounded below and above as follows:

max

{
0,max

i∈Kj

q̂aibi−MT
i,:Q̂

j
0 − (|Mi,:|1+1)γ

}
≤ p⋆

H(T )j

≤ min
i∈Kj

q̂aibi + γ,

where γ =
√

log (4|T |/δ)
2np

and np is the number of people
answering each pairwise query.

Graph Regularization: In the face of non-identifiability,
additional structural assumptions are needed for learning
the mass in the regions, i.e., polytopes, p⋆

H(T ). We note that
while p⋆

H(T ) is a O(|T |d)-dimensional probability vector,
the entries correspond to mass in regions that have a geom-
etry in the space X ⊆ Rd (recall Figure 2(a)) that gives
a notion of near-by and far-away regions. We construct a
connected undirected graph with the polytopes as the nodes
and two nodes are connected by an edge if they share a
(d − 1)-dimensional face between them (see Figure 2(c)).
We propose using a graph regularizer (normalized by vol-
ume to account for differences in the sizes of the regions)
to recover p⋆

H(T ). Intuitively, this means that we expect
preferences to accumulate in spatially nearby regions (Fig-
ure 1(c)). Several works in signal recovery have used graph
regularization to exploit local invariance in data as a side
information and find a locally invariant representation of the
data (Belkin & Niyogi, 2001; Cai et al., 2011; Hadsell et al.,
2006).

We note that this proposed graph structure can be con-
structed using the matrix M. Recall that the rows of M
correspond to hyperplanes and the columns correspond to
the regions (polytopes) inH(T ) providing a binary encod-
ing for them by construction. That is, each entry of a given
column of M determines which side of a hyperplane the
corresponding region is located on. Therefore, there exists
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an edge between nodes corresponding to the regions that
has only two different entries in their hyperplane coordi-
nates, i.e., only if one pairwise comparison yields opposite
results. Accordingly, neighboring regions have common
(d− 1)-dimensional faces in between.

We define the weight matrix W for the graph regularization
as

Wi,j =
∥M:,i −M:,j∥−1

1

αiαj
, (2)

where α = [α1, α2, . . . , α|H(T )|]
T represent volumes of re-

gions with corresponding mass p = [p1,p2, . . . ,p|H(T )|]
T

respectively.

Each entry of W is the weighted inverse of the Hamming
distance between corresponding nodes i and j, where M:,i

is the i-th column of the matrix M. Furthermore, since the
regions inH(T ) are not equal in sizes, we normalize with
the volumes of the regions.

One can similarly construct different weight matrices for
regularization as long as the entries are inversely propor-
tional to the distances between nodes. Heat kernel weighting
(Belkin & Niyogi, 2001), 0-1 weighting (Cai et al., 2011)
are some of the widely used ones in the literature. We
use W defined above and form following graph Laplacian
regularizer:

1

2

|H(T )|∑
i=1

|H(T )|∑
j=1

|pi − pj |2Wi,j =:pTDp− pTWp (3)

=:pTLp, (4)

where Di,i =
∑|H(T )|

j=1 Wi,j , Di,j = 0 when i ̸= j and
L = D−W. Using this regularizer, we propose following
optimization problem for recovering p⋆

H(T ):

p̂H(T ):= arg minp≥0,1⊤p=1

1

2
||Mp− q̂||22 +

λ

2
pTLp (5)

:= arg minp≥0,1⊤p=1

1

2
||Rp− b̂||22, (6)

where RTR = MTM + λL by Cholesky decomposition
and b̂ = R−TMT q̂.

The regularizer in equation (4) encourages the changes in
nearby regions to be smooth, which is similar to the local
invariance property considered in (Belkin & Niyogi, 2001;
Cai et al., 2011; Hadsell et al., 2006). Weighted Laplacian
regularizer L imposes a penalty on p in such a way that
potential values correlated with eigenvectors of L are di-
minished. Therefore, eigenvectors corresponding to larger
eigenvalues cause more penalty. Note that the eigenvectors
of L are mutually orthogonal by spectral theorem. So, we

conclude that orthogonal eigenvectors of nonzero eigenval-
ues force the potential solution to be close to the distribution
α by diminishing possible directions other than α, where α
is the normalized α.

We provide the following recovery guarantee using the solu-
tion to the proposed regularized optimization problem.

Theorem 4.2. The convex optimization problem in (6) has
a unique solution. Furthermore, with probability at least
1− δ, the total variation distance between p⋆

H(T ) and the
recovered mass p̂H(T ) is bounded as follows,

TV(p⋆
H(T ), p̂H(T ))≤

λ

2

√
|H(T )|∥R−1∥2∥L∥2 ∥p⋆−α∥2+√

|H(T )||T |
2

∥R−1∥2∥M∥2 max

{√
40

n
,

√
25 log (3/δ)

n

}
,

where n is the total number of users.

The maximum singular value of L and the minimum sin-
gular value of R play an important role on determining
the first component of the bound. On the other hand, the
second component tends towards 0, as the number of users
increases.

5. Experimental Results
We evaluate the proposed approaches for both simulated
and real datasets. We quantify the total variation distance
(TV) and Wasserstein distance between p⋆

H(T ) and the re-
covered mass in partitions H(T ). For 1D setting, we use
Wasserstein-1 distance and for higher dimensional settings,
we use the graph Wasserstein distance with normalized cost
matrix is written as follows,

WG(p
⋆
H(T ), p̂H(T )) :=

minK≥0, K1=p⋆
H(T )

, KT 1=p̂H(T )

|H(T )|∑
i=1

|H(T )|∑
j=1

Ki,jCi,j ,

where Ci,j is the ratio of distance between nodes i and j
to the maximum length on the graph induced by matrix M.
Note that the total variation distance does not differentiate
between whether mass is moved between neighbor regions
or any far away region. Whereas Wasserstein distances take
into account the geometry and hence distinguish between
these scenarios.

For simulations, we consider the following four distribu-
tions as true user distributions: uniform, Gaussian, a mix-
ture of two Gaussians, and a mixture of three Gaussians.
We also consider two types of noises. (a) Bernoulli(pflip)
that flips a simulated user’s answer with probability pflip.
(b) flipping the answer of user u for pair xa,xb with prob-
ability 1

1+e−cddiff
, where c is a scaling factor and ddiff =
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−abs(dist(xa,u)− dist(xb,u)). We sample m = 5 items
uniformly at random from [−1, 1]d and subsample nh hy-
perplanes repeating 10 times from all possible hyperplanes.
Similarly, for each set of pairwise comparisons correspond-
ing to the hyperplanes, we sample users from the underly-
ing distribution repeating 10 times. Then, we use CVXPY
to solve optimization problems and run all simulations on
Python 3.9.

6. Related Works
We briefly review related work, deferring a more detailed
discussion to the Appendix. Preference learning based on
ideal point model (Coombs, 1950; Jamieson & Nowak,
2011; Ding, 2016; Singla et al., 2016; Xu & Davenport,
2020; Massimino & Davenport, 2021; Canal et al.) has
been studied by several works. A key limitation of these
works is that they either focus on learning an individual pref-
erence by making many queries per individual or assume
homogeneity and learn a single preference point using data
from all the users. A recent work by Tatli et al. (Tatli et al.,
2022) introduced the problem of learning distribution of
preferences over the population in 1D setting using distance
queries rather than pairwise comparisons.

Another line of work in preference learning involves rank-
ing based models, e.g., Bradley-Terry-Luce model (Bradley
& Terry, 1952; Luce, 1959), stochastic transitivity mod-
els (Shah et al., 2016), that focus on finding ranking
of m items or finding top-k items by pairwise compar-
isons (Hunter, 2004; Kenyon-Mathieu & Schudy, 2007;
Braverman & Mossel, 2007; Negahban et al., 2012; Eriks-
son, 2013; Rajkumar & Agarwal, 2014; Shah & Wain-
wright, 2017). Ranking m items in these settings requires
O(m logm) queries. Under the ideal point based mod-
els, this query complexity reduces to O(d logm), where d
is the dimension of the domain of representations which
is usually much smaller than the number of items being
ranked (Jamieson & Nowak, 2011). This is due to the fact
that once the preference point is learned, it can then be used
to predict rankings of new items without needing more com-
parisons. We focus on preference learning that is based on
ideal point model.

7. Conclusions and Future Work
We propose a novel problem of learning distribution of
user preferences from pairwise comparison queries. We fo-
cus on fundamental questions regarding what we can learn
about the underlying distribution from a single query per
user. We show that the problem is identifiable in 1D setting
and provide recovery guarantees under the total variation
distance. We show that this problem is not identifiable in
dimensions d ≥ 2. We provide upper and lower bounds

on the masses in the regions (polytopes) formed by the in-
tersecting hyperplanes corresponding to the queried pairs.
We proposed using graph regularization for recovery of the
masses in these regions and provide bound on the total varia-
tion distance between the true distribution and the estimated
distribution. We validate these fundamental results on ex-
tensive numerical simulations. Furthermore, we show the
efficacy of the proposed methods on real datasets. As a
byproduct of this work, we introduce two new datasets for
learning distribution of user preferences. In the future, we
would like to mathematically characterize how large the
set of underlying preference distribution that lead to the
same answers to pairwise queries in terms of the TV and
Wasserstein distances. We would also like to further explore
what other structures on the underlying distributions make
it amenable to overcome non-identifiability and develop
recovery guarantees under the graph Wasserstein distance
which takes into account the geometry of the feature space.
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A. Limitations
We study the novel problem of learning populations of preferences via pairwise comparison queries when we are limited to
making one query per individual. We show that the problem is identifiable in 1D setting and provide recovery guarantees.
Further, we show that the problem is not identifiable in dimensions d ≥ 2. Linear system of equations in (1) is underde-
termined in dimensions d ≥ 2. So, we cannot recover p⋆

H(T ) in dimensions d ≥ 2. Therefore, we propose using graph
regularization for recovery of masses in H(T ) and provide recovery guarantees. Our recovery guarantees are limited to
the noiseless setting. For noisy settings, we show simulation results that are promising. Furthermore, the suitability of the
regularizer depends on the property of underlying distribution of preferences. We have explored one such regularization
technique in this work. Theoretical analysis of noisy setting and other regularizers suited for different properties would be
interesting to study in the future.

In this work, we focus on the case where we can only make one comparison query per individual. On the other end, if
we can make Õ(d) queries per individual, we can estimate individual preferences. We expect there is a trade-off between
these two regimes, that is, single query per individual to enough queries to learn individual preference points, in terms of
information gain regarding the underlying distribution of preferences, which is left to future work for further investigation.

B. Proofs
B.1. Proof of Theorem 3.1
We recall that p̂H(T ) is the solution to the constrained least square optimization problem with unit simplex constraint in
Section 3. Then, we note that Mp̂H(T ) is the projection of q̂ onto the closed convex set CM under ℓ2 distance, which we
call ProjCM

(q̂), where

CM := conv(Me1, . . . ,Mem).

Therefore, we can write

||p∗
H(T ) − p̂H(T )||2 = ||M†(q⋆ − ProjCM

(q̂))||2
≤ ||M†||2||q⋆ − ProjCM

(q̂)||2
(a)

≤ ||M†||2||q⋆ − q̂||2
≤ ||M†||2||q⋆ − q̂||1, (7)

where the inequality (a) is due the fact that the projection onto closed convex sets is contracting (Thm. 1.2.2.(Schneider,
2013)). Then, we note that 2 TV(p⋆

H(T ), p̂H(T )) = ||p∗
H(T ) − p̂H(T )||1, and use l1 − l2 norm inequality to obtain the

following from (7),

||p∗
H(T ) − p̂H(T )||1 ≤

√
|T |+ 1||p∗

H(T ) − p̂H(T )||2
≤

√
|T |+ 1||M†||2||q̂− q⋆||2

≤
√
2|T |(|T |+ 1)||M†||1||q̂− q⋆||1

=
√
2|T |(|T |+ 1)

cond(M,1)

||M||1
||q̂− q⋆||1.

Note that the term ||q̂ − q⋆||1 is the sum of l1- distances between the empirical and the true conditional distributions of
pairwise comparisons for set of pairs of items in T . We then note that ||M||1 = |T | and use the bound on the l1-norm
between empirical distribution and the true distribution for discrete distributions on finite support from following Lemma to
complete the proof.

Lemma B.1. (Lemma 3 in (Devroye, 1983)) Let v ∈ Rz be the probabilities corresponding to a multinomial random vector
with support size z. Let v̂ denote the empirical estimate of these probability values from N i.i.d. samples drawn from p.
Then, for all ε ≥

√
20z/N ,

Pr (||v̂ − v||1 > ε) ≤ 3e−Nε2/25.
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B.2. Proof of Proposition 2
We first note that we can write following

ej =

⊙∏
i∈Kj

Mi,:, j = 1, . . . , |H(T )|. (8)

Then, considering the structure of matrix M, we note that

2|T |∑
i=1

λiMi,: =

|T |∑
i=1

(λi − λ|T |+i)Mi,: +

 |T |∑
i=1

λ|T |+i

1.

If
∑|T |

i=1(λi − λ|T |+i)Mi,: +
(∑|T |

i=1 λ|T |+i

)
1 = 0 holds only when λi − λ|T |+i = 0 for all i = 1, . . . , |T | and∑|T |

i=1 λ|T |+i = 0, we can claim that 1 and Mi,:’s for i = 1, . . . , |T | are linearly independent. Therefore, we suppose that

2|T |∑
i=1

λiMi,: =

|T |∑
i=1

(λi − λ|T |+i)Mi,: +

 |T |∑
i=1

λ|T |+i

1 = 0.

Now, we take |T |-th power of the left-hand side with respect to Hadamard product and write it as follows:2|T |∑
i=1

λiMi,:

⊙|T |

= 0 (9)

Considering results of all products in given expression, we can write following Lemma.

Lemma B.2. Given the binary matrix M ∈ {0, 1}2|T |×|H(T ))| in (1) and real coefficients λi’s, we can write following2|T |∑
i=1

λiMi,:

⊙|T |

=

2|T |∑
j=1

∑
i∈Kj

λi

|T |

ej ,

where Kj is the position of rows of M whose j-th entry is 1 and ej’s are standard basis vectors.

Lemma B.3. Given the binary matrix M in Section 2, for any j ≤ |T |, we can find two columns M:,j1 and M:,j2 such that
only j-th and (|T |+j)-th entries of M:,j1 and M:,j2 differ.

Proof: Each hyperplane has to form neighboring regions by construction. Therefore, there exists two columns M:,j1 and
M:,j2 such that only j-th and (|T |+j)-th entries differ. To understand it better, we can consider a scenario where we delete
j-th row of the matrix M and call Mj to this new matrix. Mj has to have a pair of same columns. Otherwise, we would
conclude that j-th hyperplane does not form new regions, which is not possible by construction, when we consider adding
one hyperplane at a time to end up with final partition. We can also refer to the fact that each hyperplane has to divide at
least one previous region into two, when that specific hyperplane is added.

Then, from Lemma B.2, (9) yields that

2|T |∑
j=1

∑
i∈Kj

λi

|T |

ej = 0,

which happens only if ∑
i∈Kj

λi = 0, j = 1, . . . , |H(T )|,
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since standard basis vectors are linearly independent. From Lemma B.3, it follows that we can find two numbers j1 and j2
for all j = 1, . . . , |H(T )| such that ∑

i∈Kj1

λi =
∑

i∈Kj2

λi = 0,

where j ∈ Kj1 , |T | + j ∈ Kj2 and Kj1\{j} = Kj2\{|T | + j}. Therefore, we conclude that λj = λ|T |+j for all
j = 1, . . . , |H(T )|. Now, (9) implies

∑|T |
i=1 λ|T |+i = 0, which confirms the claim that rank(M) = |T |+ 1.

For the nonuniquness of the solution to the linear system of equations (1), we refer to the discussion below(Section B.3),
where we argue that the solution is not unique even for sparse cases, and complete the proof of Proposition 2.

B.3. Sparsity
We first recall that half of the rows among 2|T | rows of M reflect the mass on the other side of each hyperplane. Basically,
adding a row of all ones makes half of the rows redundant, since the rows representing the mass on the other side of each
hyperplane are just flipped versions of rows representing the mass on the first side, i.e., Mi+|T |,: = 1T −Mi,:. We call
Mhalf to the simplified version of M. Then, we note that rank(Mhalf) = rank(M) = |T |+ 1 from Proposition 2. Therefore,
we cannot make further simplifications on M to get redundant rows.

Now, we consider the simplified version Mhalf and recall that any solution p⋆
H(T ) to the problem setting in (1) has to be in

the probability simplex. Therefore, all possible q̂half vectors belong to the convex hull of columns of matrix Mhalf, which we
call conv(Mhalf). Then, we apply Carathéodory’s Theorem and write following expression. Each element in conv(Mhalf)
can be written as a convex combination of at most |T |+ 1 columns of Mhalf. We can easily observe that the same property
also applies to conv(M) and q̂, as they share a one-to-one correspondence with Mhalf and q̂half, respectively.

B.4. Proof of Proposition 3
Given any two neighboring regions in the partition H(T ), we suppose that M:,i1 and M:,i2 are corresponding columns
to those regions, where only j-th hyperplane differ in between. We observe that it is possible to find another pair of
columns, satisfying the same condition, separated solely by the j-th hyperplane as long as there exists another hyperplane
that intersects with j-th hyperplane. Therefore, we can find linearly dependent 4 columns except the trivial case when all
hyperplanes are parallel to each other. The problem setting boils down to the 1D setting, when all hyperplanes are parallel.
The binary measurement matrix M becomes full rank and we can uniquely recover underlying distribution of regions in the
partitionH(T ) separated by parallel hyperplanes.

B.5. Proof of Proposition 4
Recall that Mi,: and (ai, bi) are the row and the pair corresponding to i-th hyperplane. q⋆

ai,bi
denotes the true mass on the

side of ai of the i-th hyperplane and Kj is the position of rows of M whose j-th column entry is 1. q⋆
ai,bi

has p⋆
H(T )j

, j-th
entry of p⋆

H(T ), as a nonnegative summand when i ∈ Kj . Therefore, we can write following:

p⋆
H(T )j

≤ min
i∈Kj

q⋆
aibi , j = 1, . . . , |H(T )|. (10)

Using those upper bounds and nonnegativity of entries of matrix M, we can write following set of inequalities:

M



mini∈K1 q
⋆
aibi

...
mini∈Kj−1

q⋆
aibi

p⋆
H(T )j

mini∈Kj+1
q⋆
aibi

...
mini∈Kl

q⋆
aibi


︸ ︷︷ ︸

Qj

≥ q⋆, j = 1, . . . , |H(T )| (11)
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which enables us to lower bound each entry p⋆
H(T )j

for j = 1, . . . , |H(T )|. Here, Qj represents the vector constructed with

minimum q⋆
aibi

’s over different sets and p⋆
H(T )j

. We also define Qj
0 as the vector that jth entry of Qj is replaced with 0.

Note that each inequality in (11) can be rewritten as follows

MT
k,:Q

j ≥ q⋆
akbk

, k = 1, . . . , |T |.

We can also write an alternative expression by using standard basis vectors, i.e., ej’s,:

p⋆
H(T )j

MT
k,:ej ≥ q⋆

akbk
−MT

k,:Q
j
0, k = 1, . . . , |T |,

which provides us following bound

p⋆
H(T )j

≥ max{max
i∈Kj

q⋆
aibi −MT

i,:Q
j
0, 0}, j = 1, . . . , |H(T )|. (12)

Combining (10) and (12), we obtain following expression

max
i∈Kj

q⋆
aibi −MT

i,:Q
j
0 ≤ p⋆

H(T )j
≤ min

i∈Kj

q⋆
aibi . (13)

Below we expand on estimation errors to replace q⋆
aibi

’s with corresponding estimates. For any q⋆
aibi

, we can say that

|q̂aibi − q⋆
aibi | ≤

√
log (2/δ′)

2np
(14)

holds with probability at least 1− δ′ by Hoeffding’s Inequality. Therefore, we want to bound the probability that

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2np

holds at least for one i, where np is the number of people answering each pairwise query. Therefore, we want to bound

Pr

⋃
i

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni


≤∑

i

Pr

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni


 (15)

≤2|T |δ′, (16)

where (15) is from union bound and (16) is due to (14). Picking δ = 2|T |δ′, we conclude that

|q̂aibi − q⋆
aibi | ≤

√
log (4|T |/δ)

2np
, ∀i,

holds with probability at least 1− δ. Inserting it to the result in 13, we complete the proof of Proposition 4.

B.6. Graph Regularization
In this section, we discuss about the graph structure and the graph regularization that we proposed using in Section 4.
We note that proposed graph structure can be constructed using the matrix M. Recall that the rows of M correspond to
hyperplanes and the columns correspond to the regions (polytopes) in H(T ) providing a binary encoding for them by
construction. That is, each entry of a given column of M determines which side of a hyperplane the corresponding region is
located on. Therefore, there exists an edge between nodes corresponding to the regions that has only two different entries in
their hyperplane coordinates, i.e., only if one pairwise comparison yields opposite results. Accordingly, neighboring regions
have common (d− 1)-dimensional faces in between.

We provide a standard graph regularizer without using volume weighting here to give a better intuition about graph
regularizers and why we used volume weighting in Section 4. We start by defining following weight matrix Wunif:

Wunif
i,j = ∥M:,i −M:,j∥−1

1 , (17)
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which is the inverse of the Hamming distance between nodes i and j. Accordingly, we can write following graph Laplacian
regularizer:

R =
1

2

n∑
i=1

n∑
j=1

|pi − pj |2Wunif
i,j

=

n∑
i=1

pipiD
unif
i,i −

n∑
i=1

n∑
j=1

pipjW
unif
i,j = pTDunifp− pTWunifp = pTLunifp,

where Dunif
i,i =

∑n
j=1 W

unif
i,j , Dunif

i,j = 0 when i ̸= j and Lunif = Dunif−Wunif. Now, suppose that the spectral decomposition

of Lunif can be written as Lunif =
∑l

i=1 µiviv
T
i , where vi’s are eigenvectors and µi’s are the corresponding eigenvalues.

We now further elaborate on spectral properties of Laplacian matrices and use following Lemma.

Lemma B.4. Graph Laplacian matrices are positive semi-definite by the Gershgorin circle theorem. Furthermore, the
eigenvectors of the Laplacian matrix Lunif corresponding to zero eigenvalues are spanned by 1, which is referred to as
constant vectors in (Poignard et al., 2018).

Then, we can rewrite Laplacian regularizer in (4) as

pTATLunifAp = pT
l∑

i=1

µiA
Tviv

T
i Ap =

l∑
i=1

µi(p
T (ATvi))

2,

where A is a diagonal matrix with the entries Ai,i =
1
αi

and
∑

i Ai,i = 1. Laplacian regularizer L = ATLunifA penalizes
p so that potential p values correlated to vectors ATvi’s are diminished. We can rephrase it as follows: regularizer penalizes
p so that potential A−1p values correlated to eigenvectors vi’s are diminished. Therefore, vi’s corresponding to larger
eigenvalues cause more penalty. From Lemma B.4, it follows that Laplacian matrix L corresponding to zero eigenvalues are
spanned by A−11. In (Poignard et al., 2018), authors also point out that the multiplicity of the eigenvalue is equal to the
number of connected components in the graph, which is clearly 1 in our graph structure induced by M, since the regions
in H(T ) are connected. We note that the eigenvectors of Lunif are mutually orthogonal by spectral theory. We observe
that orthogonal eigenvectors of nonzero eigenvalues would force the candidate of the solution p to be similar to uniform
distribution by punishing possible directions other than 1. However, we note that regions inH(Sm) are not similar to an
equally spaced grid. Therefore, we use a weighted version of the regularizer in (4) with respect to the volumes of the regions
inH(T ) instead of Lunif and punish possible directions other than A−11.

In short, the regularizer in equation (4) encourages the changes in nearby regions to be smooth, which is similar to the
local invariance property considered in (Belkin & Niyogi, 2001; Cai et al., 2011; Hadsell et al., 2006). Weighted Laplacian
regularizer L imposes a penalty on p in such a way that potential values correlated with eigenvectors of L are diminished.
Therefore, eigenvectors corresponding to larger eigenvalues cause more penalty. Since the eigenvectors of L are mutually
orthogonal by spectral theorem. So, we conclude that orthogonal eigenvectors of nonzero eigenvalues force the potential
solution to be close to the distribution α by diminishing possible directions other than α, where α is the normalized α.

B.7. Proof of Theorem 4.2
We first show that the solution to the convex optimization problem in (6) is unique. Let f(p) be the objective function
1
2 ||Mp− q̂||22 + λ

2p
TLp. If we can guarantee that

∂2f

∂p2
= 2MTM+ 2λL ≻ 0, (18)

we deduce that solution to the convex optimization problem in (6) is unique. Therefore, we first focus on matrix L. From
Lemma B.4, null space of Lunif is spanned by 1. Since A is a full rank matrix, null space of L = ATLunifA is spanned
by A−11. All entries of A−11 are nonnegative since A−1 is a diagonal matrix with nonnegative entries. Now, we have
following

MTM ⪰ 0,

L ⪰ 0,

MTM+ λL ⪰ 0.
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If ker(MTM) ̸= ker(L), we can guarantee that MTM + λL ≻ 0. MTM is already positive semidefinite and A−11
cannot be an eigenvector for MTM, since all nonzero entries of MTM have same sign. Therefore, MTM+ λL is always
positive definite.

Now, we recall that RTR = MTM+ λL and note that multiplication of each element in the unit simplex with matrix R
defines following closed convex set,

CR := conv(Re1,Re2 . . . ,Re|H(T )|).

Then, the unique solution p̂H(T ) to the optimization setting in (6) can be expressed as

p̂H(T ) = R−1ProjCR
(b), (19)

where b = R−TMTMp∗. Therefore,

Rp̂H(T ) = ProjCR
(R−TMT q̂).

We start with bounding ℓ2 norm error and write

∥p̂H(T ) − p∗
H(T )∥2 ≤ ∥R−1∥2∥Rp̂H(T ) −Rp∗

H(T )∥2
= ∥R−1∥2∥Rp∗

H(T ) − ProjCR
(R−TMT q̂)∥2

≤ ∥R−1∥2∥Rp∗
H(T ) −R−TMT q̂∥2 (20)

≤ ∥R−1∥2(∥Rp∗
H(T ) −R−TMTMp∗

H(T ) (21)

+ R−TMTMp∗
H(T ) −R−TMT q̂∥2)

≤ ∥R−1∥2(∥Rp∗
H(T ) −R−TMTMp∗

H(T )∥2 (22)

+ ∥R−TMT (Mp∗
H(T ) − q̂)∥2)

≤ ∥R−1∥2(∥λR−TLp∗
H(T )∥2 + ∥R−TMT (Mp∗

H(T ) − q̂)∥2) (23)

≤ ∥R−1∥22(λ∥L(p∗
H(T ) − α)∥2 + ∥MT ∥2∥q⋆ − q̂∥2) (24)

≤ ∥R−1∥22(λ∥L∥2 ∥p⋆ − α∥2 + ∥MT ∥2∥q⋆ − q̂∥2), (25)

where (20) is due to contracting property of projection onto closed convex sets, (23) is because MTM = RTR− λL, and
(24) follows from Mp⋆

H(T ) = q⋆ and Lα = 0. Then, by using ℓ1 − ℓ2 norm inequality, we can simply write following
inequalities

TV(p⋆
H(T ),psol) =

1

2
||p∗

H(T ) − psol||1 ≤
√
|H(T )|
2

||p∗
H(T ) − psol||2

≤
√
|H(T )|
2

∥R−1∥2(λ∥L∥2 ∥p⋆ − α∥2
+ ∥MT ∥2∥q⋆ − q̂∥2)

≤ λ

2

√
|H(T )|∥R−1∥2∥L∥2 ∥p⋆ − α∥2

+

√
|H(T )|
2

∥R−1∥2∥MT ∥2∥q⋆ − q̂∥2

≤ λ

2

√
|H(T )|∥R−1∥2∥L∥2 ∥p⋆ − α∥2

+

√
|H(T )||T |

2
∥R−1∥2∥MT ∥2∥q⋆ − q̂∥1.

Lastly, we apply Lemma B.1 for ∥q⋆ − q̂∥1 and complete the proof.
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C. Simulations and Experimental Results
We present simulation results with a mixture of three Gaussians here and defer the rest to Appendix D.

1D Simulations: Figure (3) shows the relationship between the number of hyperplanes, nh, and the error in recovered mass
in the partitions H(T ) by varying nh ∈ {1, . . . , 10}, as well as between the number of people asked per query, np, and
the error, by varying np ∈ {102, 103, 104, 105}. As shown in our analysis, the recovery gets better as the number of users
increases. Note that as the number of pairs, (equivalently, the number of hyperplanes) increase, size of the length of p
increases, and hence we expect an increase in the TV.
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Figure 3. TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for mixture of 3 Gaussians in 1D.

Colors dataset: Colors dataset (Palmer & Schloss, 2010; Palmer et al., 2013) consists of answers to pairwise queries
from 48 different users and 37 colors, where each person was asked all

(
37
2

)
pairwise comparisons. In this dataset, each

color is considered as a 3-dimensional vector in CIELAB color space (lightness, red vs. green, blue vs. yellow). For our
experiment, we use the 1D user embedding of the colors dataset learned from (Canal et al.). We then project the CIELAB
color space onto this 1D user embedding space. We consider a subset of m = 5 colors sampled from this space and use all
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Figure 4. (a) TV(p⋆
H(T ), p̂H(T )) by varying number of people, (b) p⋆

H(T ) and p̂H(T ) for Colors dataset.

10 pairs for comparison. Then, we uniformly sample {102, 103, 104, 105} users from all 48 user preference points learned
from (Canal et al.) with replacement for each pair to estimate p̂H(T ) and form TV(p⋆

H(T ), p̂H(T )) as shown in Figure (4)(a).
Figure (4)(b) shows the true distribution of people (computed using making multiple queries to each user on a separate user
set) and the distribution recovered using our method.

Simulations for d ≥ 2: Figure (5) shows the relationship between the number of hyperplanes, nh, and the error in recovered
mass in the partitionsH(T ), as well as between the number of people asked per query, np, and the error for d = 2. We use
λ = 1 here and defer results with varying regularization parameter λ to Appendix D. Additionally, we provide simulation
results using l1- and l2-norm regularizations and the maximum likelihood estimate (KL) as baselines (Figure (6)(c)). We
defer more detailed results to Appendix D. Figures (6)(a) and (b) show the relationship between the feature dimension d and
the error in recovered mass in the partitionsH(T ).
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Figure 5. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for mixture of 3 Gaussians in 2D
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Figure 6. (a) TV(p⋆
H(T ), p̂H(T )), (b) WG(p

⋆
H(T ), p̂H(T )) for mixture of 3 Gaussians with varying d. (c) WG(p

⋆
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different objective functions with varying np.

Bounds on the Mass: We generate the true underlying preferences from a mixture of 3 Gaussians
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Figure 7. Lower and upper bounds with the true underlying distribution, a mixture of 3
Gaussians.

in 2D. We query for 5 pairs of items
and 10, 000 users per pair. Figure (7)
shows the upper and lower bounds on
the mass in each of the regions in the
intersection of the 5 hyperplanes using
equations in Proposition 4. We also
show the true mass induced by the un-
derlying distribution in these regions
which highlights the efficacy of our
bounds.

Zappos: UT Zappos50K (Yu & Grau-
man, 2014; 2017) is a large dataset
with 50, 025 catalog images of shoes in different categories, such as shoes, sandals, slippers, and boots. We manu-
ally pick five shoes from this dataset and collect responses from 6000 Amazon Mechanical Turk (AMT) workers for each
possible pairwise query. With a subset of workers’ answers to each possible pairs, we estimate p⋆

H(T ) and use the remaining
workers to answer pairwise comparison queries using only one response per worker to estimate p̂. We defer details of the
setting to Appendix D. Figures 8(a) and (b) show the results of our experiments on this dataset.

Movies: We create a new dataset comprising 4, 266 movies from different countries, produced between 2013 and 2022,
inclusive. Each movie is associated with its plot and info scrapped from Wikipedia (Wikipedia, 2023). We utilize OpenAI’s
text-embedding-ada-002 model (OpenAI, 2023) to generate an embedding for each movie. Then, we train a regression
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neural network, where the target is each movie’s average IMDB rating (IMDB, 2023). We use the output of the penultimate
layer from the network as an intermediate embedding, which has 100 dimensions. Lastly, we reduce it to 2D using PaCMAP
(Wang et al., 2021a). In the subsequent experiment, we consider the 2D embedding as the coordinates for the movies. We
scrape the ratings of reviewers, both critics and audience, from Rotten Tomatoes (Tomatoes, 2023), and use these ratings to
create answers to pairwise comparison queries. We run our experiment on a set of 13 DC Comics superhero movies. We
consider 9 pairwise comparisons questions and assign each pair to 50 reviewers. Our results are presented in Figures 8(c)
and (d).
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Figure 8. (a) p⋆
H(T ) and p̂H(T ) for Zappos dataset. (b) Estimated upper and lower bounds for p⋆

H(T ) in Zappos dataset. (c) p̂H(T ) in
movies dataset. (d) Estimated upper and lower bounds for p̂H(T ) in movies dataset.

D. Additional Simulations and Experimental Results with Details
D.1. Simulations for d = 1

We provide simulation results for following group of user distributions: uniform, Gaussian, a mixture of 2 Gaussians, and a
mixture of 3 Gaussians. We also present simulations results for varying amount of noises in both noise models.

Figure 9-12 show the relationship between the number of hyperplanes, nh, and the error in recovered mass in the partitions
H(T ) by varying nh ∈ {1, . . . , 10}, as well as between the number of people asked per query, np, and the error, by varying
np ∈ {102, 103, 104, 105}, under the 4 user distributions and different noises. As it can be seen in our analysis, the recovery
gets better as the number of users increases. Note that as the number of pairs, (equivalently, the number of hyperplanes)
increase, size of p increases, and hence we expect an increase in the TV.
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Figure 9. TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for uniform user distribution in 1D.
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Figure 10. TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for Gaussian user distribution in 1D.
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Figure 11. TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussians user distribution in 1D.

D.2. Construction of M in dimensions d ≥ 2

Unlike 1D, algorithmic construction of binary matrix M is not straightforward in dimensions d ≥ 2. We need to figure out
which polytopes, i.e., regions, are on the left side of a given hyperplane. We recall that these polytopes are defined by the
halfspaces induced by the bisecting hyperplanes of item pairs in T .

Hence, our problem can be formally described as follows: Given a set of halfspaces Hs = {a⊤
ijx + bij < 0 : hij =

a⊤
ijx+ bij = 0, i < j}, where hij is the bisecting hyperplanes of pair (xi,xj) ∈ T , we want to find all polytopes inH(T )

that are in the halfspace hs, for each hs ∈ Hs. To make our life easier, we define a bounding box [−1, 1]d, so that we can
only look at the polytopes within this box and avoid unbounded polytopes. For simplicity, we use the vector [aij bij ] to
represent a halfspace.

Let Bs denote the set of halfspaces that defines the bounding box [−1, 1]d. Let Pt denote the set of polytopes that we have
discovered. Let Hu

s denote the set of halfspaces we have not explored yet. Our algorithm works as follows:
Pt ← {Bs}
for hs ∈ Hs \Ho

s do
for pt ∈ Pt do

if hs intersects with pt then
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Figure 12. TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussians user distribution in 1D.

plt ← pt ∪ {hs}
prt ← pt ∪ {−hs}
Pt ← Pt \ pt
Pt ← Pt ∪ {plt, prt}

end if
end for

end for

To check if hs intersects with pt, we first assume that hs splits pt into two polytopes, namely, plt := pt ∪ {hs} and
prt := pt ∪ {−hs}. If plt or prt degenerate, then the assumption does not hold and therefore hs does not intersect with pt. To
verify if plt or prt degenerate, we check if they have a Chebyshev center, which can be found by solving the following linear
program twice:

max
y,r

r

subject to aT
i y + ||ai||r ≤ bi, ∀i ∈ [|pt|+ 1]

where [ai bi] is the ith halfspace in plt(or prt ) and y is the Chebyshev center (when solved). If the two linear programs
have (bounded) solutions and y is in pt, we can say that plt and prt have Chebyshev centers and therefore hs intersects with
pt. Otherwise, we can conclude that hs does not intersect with pt. To determine the position of any polytope with respect to
hyperlanes (halfspaces), we check whether the Chebyshev center of that polytope is on the left or right of the hyperplane (is
in the halfspace).

D.3. Simulations for d ≥ 2

We first present the results with varying regularization parameter λ. Figure 13 and 14 present the behavior of TV and
WG under the 4 user distributions while we vary λ when np = 10, 000, m = 5, nh = 10, and d = 2. No noise model is
introduced in this set of simulation. 4 different colored lines in Figures refer to the 4 different objective we used. Least
Square + Graph means that the objective is least square with graph regularization; Least Square + L1 means that the objective
is least square with ℓ1 regularization; Least Square + L2 means that the objective is least square with ℓ2 regularization, and
KL means that the objective is the KL divergence of q̂ from Mp, DKL(q̂,Mp), where the solution is maximum likelihood
estimate.

We also present the behavior of TV and WG when we use a different formulation of the optimization problem, where
we use the regularization term in the original optimization objective as the sole objective, and use ||Mp − q̂||22 ≤ ε
(DKL(q̂,Mp) ≤ ε) as an additional constraint. We set ε = 10−5 in simulation. Figure 15 and 16 present the results with
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Figure 13. TV(p⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user distribution while

varying the regularization parameter λ.
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Figure 14. WG(p
⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user distribution while

varying the regularization parameter λ.

the new formulation of the optimization problem under the same setting as above.
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Figure 15. TV(p⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user distribution while

varying the regularization parameter λ.
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Figure 16. WG(p
⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user distribution while

varying the regularization parameter λ.

In the subsequent simulation, we fix λ = 1. We now provide simulation results for following group of users distributions:
uniform, Gaussian, a mixture of 2 Gaussians, and a mixture of 3 Gaussians. We also present simulations results for varying
amount of noises in both noise models. Figure 17-20 show the relationship between the number of hyperplanes, nh, and the
error in recovered mass in the partitionsH(T ), as well as between the number of people asked per query, np, and the error
for d = 2, with the 4 user distributions and different noise models.
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Figure 17. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for uniform user distribution in 2D.

Additionally, Figure 21- 24 show the relationship between the feature dimension d and the error in recovered mass in the
partitionsH(T ).

Lastly, Figure 25- 28 provide simulation results in terms of WG using all optimization methods while varying the number of
people per pair, np, under all 4 user distributions, d = 2, nh = 5, with no noise model introduced.
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Figure 18. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D.
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Figure 19. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D.
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Figure 20. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D.
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Figure 21. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for uniform user distribution in 2D with varying d.
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Figure 22. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D with varying d.

2 3 4 5 6
no. dimensions (d)

0.0

0.2

0.4

0.6

0.8

1.0

T
V

(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

0.0

0.2

0.4

0.6

0.8

1.0

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 23. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D with varying d.
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Figure 24. TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D with varying d.
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Figure 25. WG(p
⋆
H(T ), p̂H(T )) for uniform user distribution in 2D with varying np using all optimization methods.
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Figure 26. WG(p
⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D with varying np using all optimization methods.
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Figure 27. WG(p
⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D with varying np using all optimization methods.
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Figure 28. WG(p
⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D with varying np using all optimization methods.

D.4. Zappos
The Zappos dataset (UT Zappos50K) (Yu & Grauman, 2014; 2017) comprises 4 major categories of shoes: Boots, Sandals,
Shoes, and Slippers. Each major category includes several minor categories. For instance, within the Boots category, you
can find Ankle, Knee High, Mid-Calf, Over the Knee, and Prewalker Boots. Table 1 shows the major and minor categories
in the Zappos dataset.

Major Category Minor Category

Boots Ankle, Knee High, Mid-Calf, Over the Knee, Prewalker
Boots

Sandals Athletic, Flat, Heel

Shoes
Boat Shoes, Clogs and Mules, Crib Shoes, Firstwalker,
Flats, Heels, Loafers, Oxfords, Prewalker, Sneakers and
Atheletic Shoes

Slippers Boot, Slipper Flats, Slipper Heels

Table 1. Major and minor categories in the Zappos dataset.

Data Preprocessing: We consider minor category, that has a cardinality of 21, as the label space. To ensure that all the
images have the same dimension, we use the Zappos image square dataset. Then, we resize them to 135× 135. Lastly, we
convert the images into grey scale.

We train a modified VGG11 convolutional neural network (Simonyan & Zisserman, 2014) on the Zappos dataset. VGG11 is
intended to be trained on ImageNet (Deng et al., 2009), which has 1000 classes. We modify the last layer of the network so
that it works with 21 classes. We insert a new layer as the penultimate layer of the network. This is because the original
penultimate layer has an output of dimension 4096, which is too large. By reducing it to 512, we can employ the output of
this penultimate layer as the embedding for the Zappos dataset.
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Training: We use 80% of the dataset as the training set and the rest as the test set, both with a batch size of 64. We use SGD
optimizer with learning rate 0.01, momentum 0.9, and weight decay 0.0005. After 12 epochs, we achieve a train accuracy of
94.05% and a test accuracy of 86.81%. To generate an embedding for the Zappos dataset, we feed the entire dataset into the
trained network and extract the output from the penultimate layer, resulting in a matrix of dimensions 50066× 512. We use
PaCMAP (Wang et al., 2021b) with default parameters to obtain the 2D embedding of shoes as shown in Figure 29.

Figure 29. 2D embedding of the 5 shoes obtained using penultimate layer of modified VGG11 and PaCMAP. Each color represents a
minor category. 5 shoes we used for experiments are also located.

Data Collection via Crowdsourcing: We pick 5 shoes as our query item set (30).

Figure 31 shows the instructions provided and the interface for answering pairwise comparison queries.
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Figure 30. The 5 shoes we pick for pairwise comparison task on Amazon Mechanical Turk.

Figure 31. Amazon Mechanical Turk Task interface

We posted this task on Amazon Mechanical Turk (AMT) (MTurk). Each task has 15 pairwise comparison queries (10 pairs
and 5 repeats). The median time taken per query is around 2.58s and for the task (15 pair comparisons) is ∼ 47s. Each
worker is paid 15 cents per task. This is roughly ∼ $7 per hour. We did not restrict the task to master workers. The task was
open to all those who had at least 500 HITs approved and 95% approval rate.

We first bootstrap 10%, 20%, 30%, 40%, 50% of all workers, repeating the process 100 times for each percentage. Then, we
use answers to all possible queries from these workers to estimate the true mass with nh = 5 and nh = 10. We create a
global bin (initialized to 0) whose size equals to the number of regions formed by the hyperplanes. Each worker has its own
local bin (initialized to 0) that has the same size as the global bin. For each pairwise comparison query, the worker can only
be on one side of the corresponding hyperplane. Consider all polytopes on the side of the hyperplane related to worker’s
answer. We increase the corresponding entries of these polytopes in the bin by 1. After we examine all queries, a set of
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entries has the maximum value among all entries in the bin. Ideally, this set has a cardinality of 1. However, due to noises
and worker’s inconsistency, it is possible for the cardinality to be greater than 1. We increase the corresponding entries of
this set in the global bin by 1

cardinality of the set . After we examine all workers we bootstrapped, we normalize the global bin and
obtain a probability vector, which is our estimate of the p⋆.

Figure 32 and 33 illustrate the p⋆ we estimated via bootstrapping. It can be seen that the true distribution p⋆ that we
estimated is stable across different bootstrap settings.
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Figure 32. p⋆ obtained via bootstrap (a) 10% (b) 20% (c) 30% (d) 40% (e) 50% of all crowdworkers when nh = 5.
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Figure 33. p⋆ obtained via bootstrap (a) 10% (b) 20% (c) 30% (d) 40% (e) 50% of all crowdworkers when nh = 5.

We also present p̂ that we obtain via our method. We first use 20% of crowdworkers to estimate p⋆. Then, use the remaining
80% of crowdworkers to answer the pairwise comparisons and estimate p̂ using our method. We shuffle the remaining
80% of crowdworkers 100 times to obtain 100 different q̂ and hence 100 different p̂. We repeat the above process 5 times
(each time with different 20% of crowdworkers to estimate p⋆) for both nh = 5 and nh = 10. The results are presented in
Figure 34 and 35. The bounds for p⋆ are presented in Figure 36 and 37 for nh = 5 and nh = 10, respectively.
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Figure 34. p⋆ obtained using 20% of crowdworkers and p̂ obtained using the remaining 80% of the crowdworkers 100 times. Each of the
(a)-(e) uses different set of 20% of all crowdworkers to obtain p⋆, when nh = 5.

Figure 38 shows the TV and WG between p⋆ and p̂ while we vary nh from 1 to 10.
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Figure 35. p⋆ obtained using 20% of crowdworkers and p̂ obtained using the remaining 80% of the crowdworkers 100 times. Each of the
(a)-(e) uses different set of 20% of all crowdworkers to obtain p⋆, when nh = 10.
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Figure 36. Upper and lower bound for p⋆ when nh = 5.
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Figure 37. Upper and lower bound for p⋆ when nh = 10.
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Figure 38. TV and WG when we vary nh.

Lastly, Figure 39-48 illustrate the polytopes formed by the hyperplanes as well as p⋆ and p̂ while we vary nh from 1 to 10.
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Figure 39. (a) p⋆ and p̂ recovered by our algorithm when nh = 1. (b) regions formed by 1 hyperplane. The numbers in each region
corresponds to the region ID.
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Figure 40. (a) p⋆ and p̂ recovered by our algorithm when nh = 2. (b) regions formed by the 2 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 41. (a) p⋆ and p̂ recovered by our algorithm when nh = 3. (b) regions formed by the 3 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 42. (a) p⋆ and p̂ recovered by our algorithm when nh = 4. (b) regions formed by the 4 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 43. (a) p⋆ and p̂ recovered by our algorithm when nh = 5. (b) regions formed by the 5 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 44. (a) p⋆ and p̂ recovered by our algorithm when nh = 6. (b) regions formed by the 6 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 45. (a) p⋆ and p̂ recovered by our algorithm when nh = 7. (b) regions formed by the 7 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 46. (a) p⋆ and p̂ recovered by our algorithm when nh = 8. (b) regions formed by the 8 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 47. (a) p⋆ and p̂ recovered by our algorithm when nh = 9. (b) regions formed by the 9 hyperplanes. The numbers in each region
corresponds to the region ID.
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Figure 48. (a) p⋆ and p̂ recovered by our algorithm when nh = 10. (b) regions formed by the 10 hyperplanes. The numbers in each
region corresponds to the region ID.
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D.4.1. MOVIES

We create a new dataset of 4266 movies. We use OpenAI’s text-embedding-ada-002 model to generate an 1536 dimensional
embedding for each movie. Then, we train a regression neural network, where the target is each movie’s average IMDB
rating. For this, we use 80% of the movies as the training set and the rest as the test set, where batch size 4. We use SGD
optimization with learning rate 0.0001, momentum 0.9, Huber loss. After 250 epochs, we reach a mean average error of
0.63 on the test set.

For pairwise comparisons task, we pick the following 2 sets of movies in a way that most of the movies in those 2 sets have
unbalanced opinion in terms of critics by general audience:

• DCEU superheroes (12 DC superhero movies)

• Movie2 (7 movies from US, China, and South Korea)

We scrap critics and audience ratings for selected movies from Rotten Tomatoes. Then, we construct a set of users for each
movie from its reviewers. We look for intersections of user sets for each pair of movies. If the size of intersection is small,
we discard the corresponding pair. Since movies in DCEU have the similar type and are from the same franchise, it is more
likely that we encounter common reviewers. Hence, the definition of small size of intersection is different for the 2 sets. For
DCEU, we discard pairs whose size of intersection is less than 200. For Movie2, we discard pairs whose size of intersection
is less than 100. This process leaves us with 9 pairs of movies for DCEU and 3 pairs of movies for Movie 2.

For a given pairwise comparison query based on movie pairs, a randomly selected reviewer picks the one that has a higher
rating (rated by the same reviewer). If both movies in a pair have the same rating, we pick the movie on the left of the pair.
After a reviewer answered one query, we are done with this reviewer. We perform 100 repetitions of calculating p̂H(T ) by
reshuffling users each time, where np = 50 for DCEU and np = 25 for Movie2. Since we do not query any user more than
once, we do not have enough information to estimate p⋆

H(T ), unlike our experimental work on the Zappos dataset.

Figure 49 (a) (b) show the p̂ recovered using our method and the bounds for p⋆ for the DCEU movie set. Figure 49 (c) (d)
show the p̂ recovered using our method and the bounds for p⋆ for the Movie2 movie set. Figure 50 and 51 shows the regions
formed by the hyperplanes and the movies’ location in the embedding space for DCEU amd Movie2 movie set, respectively.
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Figure 49. (a) p̂ recovered for the DCEU movie set (b) Bounds for p⋆ for the DCEU movie set (c) p̂ recovered for the Movie2 movie set
(d) Bounds for p⋆ for the Movie2 movie set.
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Figure 50. Regions formed by the hyperplanes from DCEU movie set. The numbers in each region represent the region ID as well as
the probability mass recovered by our method in that region. Movies in the DCEU movie set are also labeled using their corresponding
embedding.
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Figure 51. Regions formed by the hyperplanes from Movie2 movie set. The numbers in each region represent the region ID as well as the
probability mass recovered by our method in that region. Movies in the Movie2 movie set are also labeled using their corresponding
embedding.


