
Crowdsourced Clustering via Active Querying:
Practical Algorithm with Theoretical Guarantees

Yi Chen1, Ramya Korlakai Vinayak1, Babak Hassibi2

1 University of Wisconsin-Madison
2 California Institute of Technology

yi.chen@wisc.edu, ramya@ece.wisc.edu, hassibi@systems.caltech.edu

Abstract

We consider the problem of clustering n items into K disjoint
clusters using noisy answers from crowdsourced workers to
pairwise queries of the type: “Are items i and j from the same
cluster?” We propose a novel, practical, simple, and com-
putationally efficient active querying algorithm for crowd-
sourced clustering. Furthermore, our algorithm does not re-
quire knowledge of unknown problem parameters. We show
that our algorithm succeeds in recovering the clusters when
the crowdworkers provide answers with an error probabil-
ity less than 1/2 and provide sample complexity bounds on
the number of queries made by our algorithm to guarantee
successful clustering. While the bounds depend on the error
probabilities, the algorithm itself does not require this knowl-
edge. In addition to the theoretical guarantee, we implement
and deploy the proposed algorithm on a real crowdsourcing
platform to characterize its performance in real-world set-
tings. Based on both the theoretical and the empirical results,
we observe that while the total number of queries made by the
active clustering algorithm is order-wise better than random
querying, the advantage applies most conspicuously when the
datasets have small clusters. For datasets with large enough
clusters, passive querying can often be more efficient in prac-
tice. Our observations and practically implementable active
clustering algorithm can inform and aid the design of real-
world crowdsourced clustering systems. We make the dataset
collected through this work publicly available (and the code
to run such experiments).

1 Introduction
Crowdsourcing, which refers to using a crowd of poten-
tially non-expert humans to obtain information useful for
downstream tasks, has become one of the most popular
ways of collecting labelled datasets for supervised learning
tasks (Sorokin and Forsyth 2008; Raykar et al. 2010). There
is an abundant amount of data, e.g., billions of images and
texts, that can be readily scraped from the internet. However,
most of these datasets are unlabeled, and it is unclear what
structures might exist in them. Crowdsourcing can be a very
useful resource for exploring structure in such data (Welin-
der et al. 2010).

We consider the problem of crowdsourced clustering –
finding clusters in a dataset with unlabeled items by query-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing pairs of items for similarity: “Are items i and j from the
same cluster?” Viewing the items to be clustered as nodes
in a graph whose edges have not been observed, we have a
problem of clustering a graph with access to a noisy oracle
that can answer pairwise similarity queries.

A passive strategy for clustering in this scenario is
to query all the pairs (i.e., edges), a random subset of
pairs (Vinayak and Hassibi 2016), or a specifically con-
structed subset of pairs (Gomes et al. 2011; Ibrahim and Fu
2021) and then perform graph clustering. A major hiccup
of such passive strategies is that they can only recover rela-
tively large clusters. This is because the existing polynomial
time graph clustering algorithms can only recover clusters
at least Ω(

√
n) in size. This is related to the well-known

hidden clique problem, where the goal is to find a hidden
clique of a certain size in a random graph of size n. It is cur-
rently an open conjecture that there is no polynomial time
passive algorithm that can recover a hidden clique of size
smaller than

√
n. Active clustering, on the other hand, can

potentially transcend this barrier. In this paper, we study how
to cluster a set of items using these crowdsourced pairwise
comparison queries in an active manner that overcomes the
issue of recovering small clusters.

Our Contributions: We propose an active crowdsourced
clustering algorithm that does not rely on any unknown
problem parameters. It is computationally efficient, simple
to implement, and capable of recovering clusters regardless
of their sizes. We also provide an analysis of the proposed
algorithm and sample complexity bound that guarantees the
algorithm’s success in recovering all the clusters with high
probability (with failure probability decaying as 1/n). A key
observation is that when the crowdworkers are better than
random guessers (i.e., the error probability is less than 1/2),
the problem of deciding whether two items, i and j, belong
to the same cluster can be recast as a problem of inferring if
the true parameter of a Bernoulli random variable is above
or below 1/2. Our algorithm is inspired by the finite law of
iterated logarithms (LIL) for multi-arm bandits (Jamieson
et al. 2014; Heckel et al. 2019).

We implement and deploy the proposed algorithm on a
real crowdsourcing platform and evaluate its performance
in real-world settings. Based on both the theoretical and the
empirical results, we observe that the total number of queries

made by the active clustering algorithm is order-wise better
than random querying. However, the advantage of our al-
gorithm is most conspicuous when the datasets have small
clusters, which is a hard scenario for passive clustering al-
gorithms. For datasets with large clusters, which are easier
settings, a passive querying strategy of randomly querying
a subset of edges followed by graph clustering can often be
query efficient in practice. To the best of our knowledge,
this is the first demonstration of an active clustering algo-
rithm working in practice (beyond simulations). We make
our dataset and codebase publicly available to enable further
development and deployment of such systems 1.

Related Literature: Many prior works that consider the
problem of crowdsourced clustering using pairwise similar-
ity queries employ a passive strategy with either a determin-
istic pattern fixed a priori (Gomes et al. 2011; Ibrahim and
Fu 2021) or randomly chosen queries (Vinayak, Oymak, and
Hassibi 2014; Vinayak and Hassibi 2016). Another related
line of work is entity resolution in databases, where the goal
is to find data records that represent the same real-world en-
tities. There is a rich line of work in this area (see (Wang
et al. 2012; Vesdapunt, Bellare, and Dalvi 2014; Verroios
and Garcia-Molina 2015) and the references therein) that use
heuristics-based crowdsourcing algorithms to resolve enti-
ties. Most of these works assume that there is a machine-
generated similarity matrix between different data records
and use this information to decide which data records to
query. (Mazumdar and Saha 2017c,b) provide analysis for
some of the popular heuristics and algorithms when side in-
formation is present.

A closely related work is (Yun and Proutiere 2014), which
focuses on the setting with a fixed number of clusters of
large sizes, i.e., Θ(n), which is an easier setting for cluster-
ing. They also assume that the number of clusters is known
a priori. The authors propose spectral clustering-based algo-
rithms and theoretically analyze both passive and adaptive
querying strategies.

Another closely related work is (Mazumdar and Saha
2017a), which also considers active clustering by crowd-
sourcing. The key differences from our setting are that they
forbid repeated querying of a pair of items, and they as-
sume that the algorithm is aware of the error probability
p. Two algorithms are proposed in (Mazumdar and Saha
2017a), one that achieves a near-optimal query complex-
ity but is computationally hard, while the other is computa-
tionally efficient but with sub-optimal query complexity. In
particular, the query complexity of the computationally ef-
ficient algorithm grows quadratically in the number of clus-
tersK, which is very costly when there are many small clus-
ters. Both algorithms require the cluster sizes to be at least
Ω(log n). Furthermore, both the algorithms in (Mazumdar
and Saha 2017a) require knowledge of the error probability
p, which makes it difficult to deploy in practical crowdsourc-
ing setups. Under similar assumptions of forbidden repeated
queries and assuming the knowledge of error probability,
another recent work (Mukherjee, Peng, and Zhang 2022)

1https://github.com/kitkatdafu/crowd-active-clustering

provides efficient algorithms to recover clusters of size at
Ω(k log n) for a fixed error probability.

In contrast, we consider the setting where the error proba-
bilities are unknown and repeated querying of the same pair
of items to different crowdworkers is allowed. Our algorithm
is simple to implement, computationally efficient, capable of
recovering clusters regardless of their sizes, and agnostic of
the number of clusters and error probabilities while achiev-
ing near-optimal (up to logarithmic factors) query complex-
ity. One of the key contributions of our work is addressing
how to deal with unknown parameters, which is essential for
making the algorithm practical in real-world settings. We
demonstrate that repeating queries is, in fact, practical and
effective in deciding cluster memberships by deploying our
algorithm on a popular crowdsourcing platform and running
crowdsourced clustering tasks with real crowdworkers. The
goal of repeated querying in our setting is not to drive the
empirical error to 0 but instead to guarantee that either the
lower confidence bound on the unknown true parameter is
above or the upper confidence is below 1/2.

2 Problem Setup
In this section, we describe the problem setup, the model,
and the assumptions. Consider n items that belong to K dis-
joint clusters. Consider a pool of crowdworkers who pro-
vide noisy answers to pairwise queries of the type: “Are
items i and j from the same cluster?” Let Query(i, j) de-
note such a pairwise query. Let Xij(s) denote the answer
provided by crowdworker s to Query(i, j). In particular,
Xij(s) = 1 if the answer to Query(i, j) by worker s is “yes”
and Xij(s) = 0 if the answer is “no”. For any pair of items
i and j, and any positive integer m, let X̄ij(m) denote the
average of m independent answers to the Query(i, j), i.e.,

X̄ij(m) :=
1

m

m∑
s=1

Xij(s). (1)

For any item j, we use the notation cluster(j) to denote the
cluster that contains item j.

Suppose the workers were perfect; then, with Θ(nK)
queries, we could assign all the items to the correct clus-
ters. However, the workers on crowdsourcing platforms are
not experts and hence make errors.

Model: We consider the following two-coin model for
worker errors. When two items i and j are from the same
cluster, for all workers s,

Xij(s) =

{
1 with probability p,
0 with probability 1− p. (2)

When i and j are not from the same cluster, for all workers
s,

Xij(s) =

{
1 with probability q,
0 with probability 1− q. (3)

We note that this is similar to the Stochastic Block Model
(SBM) used in analyzing graph clustering or community
detection problems (Holland, Laskey, and Leinhardt 1983;
Condon and Karp 2001), where Xij = 1 denotes an edge
and Xij = 0 denotes no edge between two nodes i and j.

Assumptions: We assume that the answers given by dif-
ferent workers are independent, i.e., Xij(s) and Xij(s

′) are
independent when s ̸= s′. We also assume that while the
workers make errors, they are better than random guessers,
i.e., 1 ≥ p > 1

2 > q ≥ 0.

3 Active Clustering Algorithm
In this section, we present the active querying algorithm for
crowdsourced clustering. The algorithm proceeds by build-
ing clusters from scratch. Initially, we have a set of items
to be clustered. A randomly chosen item is set as its own
cluster at the beginning. We start by picking an item i that
is yet to be clustered and query it with existing clusters to
decide its membership. To decide the membership of item i
with cluster(j), an item is picked at random from cluster(j)
and the Query(i, j) is repeated with different crowdwork-
ers until the membership of i can be established with con-
fidence. If it does not belong to any of the existing clusters,
then it starts a new cluster. This process continues until all
the items are clustered. The key challenge is to decide the
cluster memberships with guaranteed confidence when the
error probabilities are unknown. We propose using the fi-
nite law of iterated logarithms (Jamieson et al. 2014) to ob-
tain time-varying confidence bounds, which are monotoni-
cally decreasing in time t and are valid for all t. The detailed
pseudocode for the algorithm is given in Algorithm 1.

4 Performance Guarantees
We analyze Algorithm 1 under the error model inspired by
the SBM and the assumptions described in Section 2. Let
∆ = 1

2 min{p− 1
2 ,

1
2 − q}. We can guarantee the following

performance for Algorithm 1 under the assumptions on our
model:

Theorem 1 (Main Theorem). Algorithm 1 succeeds
in recovering all the clusters exactly with at most
O
(
nK
∆2 log

(
n log 1

∆

))
queries overall, with high probabil-

ity.

Note that high probability here refers to an upper bound
on the probability of failure that decays at the rate upper
bounded by 1/n. While the bound on the query complexity
is a function of the problem parameters, K, p, and q, the
algorithm itself does not need to know these parameters.

If p < 1 and q > 0, Ω
(

1
∆2

)
repetitions per query are

needed and hence Ω
(
nK
∆2

)
queries are necessary for Algo-

rithm 1 to succeed with probability at least 3/4. Hence, the
upper bound on the number of queries is optimal up to log
factors. Furthermore, the extra price that Algorithm 1 pays
for not knowing ∆ (as compared to the sample complex-
ity if we knew p and q) is a log

(
log b2

∆

)
term. Comparing

our bounds with the asymptotic lower bounds in (Yun and
Proutiere 2014) and the lower bounds in (Mazumdar and
Saha 2017a), we note that our bounds are within log factors
of optimal query complexity. In particular, for p = 1−q, the
lower bound is of the order Ω(nK∆2).

The following corollary provides the general version of
the main theorem,

Algorithm 1: Active Crowdclustering by Crowdsourcing;
without the knowledge of p and q

1: Input: set of items to be clustered V , ζ ∈ (0, 1), δ ∈
(0, log(1 + ζ)/e)

2: Output: C, clusters
3: Pick i ∈ V randomly
4: Initialize C = {C1 := {i}}
5: V ← V \ {i}
6: while V ̸= ∅ do
7: Pick v ∈ V randomly
8: for k ∈ [|C|] do
9: Pick u ∈ Ck randomly

10: X̄vu(0)← 0
11: for each time step t do
12: Xvu(t) ← Query(v, u) {Query to a distinct

crowdworker}
13: X̄vu(t) ← t−1

t X̄vu(t − 1) + 1
t X̄vu(t)

{Cumulative empirical average of the answers}

14: ψ(t) ← (1 +
√
ζ)

√
1+ζ
2t log

(
(1+ζ)t

δ

)
{Confidence interval}

15: if X̄uv(t)− ψ(t) > 1
2 then

16: Ck ← Ck ∪ {v} {Assign v to Ck}
17: V ← V \ {v}
18: goto Line 6
19: end if
20: if X̄uv(t) + ψ(t) < 1

2 then
21: goto Line 8 with k increments by 1 {Move to

next cluster}
22: end if
23: end for
24: end for
25: if v is not assigned to Ck,∀k then
26: C ← C ∪ {v} {Start a new cluster with v}
27: V ← V \ {v}
28: end if
29: end while
30: return C

Corollary 2. For any ζ ∈ (0, 1), c ≥ 3, δ = δ′

nc ∈
(0, log (1 + ζ)/e), then with probability at least 1 − 1/n,
Algorithm 1 succeeds in recovering all the clusters exactly
and the total number of queries made is upper bounded
by O

(
nK b1

∆2 log
(

nc

b3δ′
log b2

∆

))
, where b1 = 3, b2 =

(1 + ζ)2, b3 = 1
(2(1+

√
ζ))3

.

Note that c, δ and ζ can be chosen such that the failure
probability decays as 1/poly(n) and this does not require
the knowledge of error probabilities p and q. We further note
that the choice of δ and ζ also affects the size of confidence
interval ψ(t) and hence the number of queries made by Al-
gorithm 1. The bound presented in Theorem 1 is obtained by
choosing c = 4 and ζ = 0.1151.

Our proof is based on constructing monotonically de-
creasing confidence intervals around the cumulative empir-
ical mean of the answers for a pair (u, v) as a function of
time, i.e., the number of queries so far, X̄uv(t), and the

unknown true mean, which are simultaneously valid for
all times with high probability. We construct these confi-
dence intervals, ψ(t), using the finite law of iterated loga-
rithms (LIL) ((Jamieson et al. 2014)). With the help of the
LIL-based confidence intervals, ψ(t), our algorithm decides
whether to assign u to the same cluster as v or decides u and
v are not in the same cluster. This is done based on whether
the lower confidence bound goes above 1/2 or the upper
confidence bound goes below 1/2 without knowing the true
mean a priori. We analyze the stopping time, i.e., the number
of repeated queries until either the lower confidence bound
goes above 1/2 or the upper confidence interval goes below
1/2, for each queried pair to upper bound the number of re-
peated queries taken per pair. Combining with all the pairs
queried, which is at most Θ(nK), provides the overall query
complexity bound.

Discussion
In this section, we reflect on Algorithm 1, discuss exten-
sions, and compare with passive querying.

General bound with confusion matrix While the main
result is presented with a simple two-coin error model where
the probabilities p and q capture the intra- and inter-cluster
error probabilities, respectively, the analysis can be extended
to a more general setting. Let P ∈ [0, 1]n×n be the confusion
matrix associated with the n items being clustered, where
each entry Pij is the probability of the answer to Query(i, j)
is 1. The assumption that the workers are better than random
guessers in this general case implies that Pij > 1/2 when i
and j are from the same cluster and Pij < 1/2 otherwise.
Define ∆ij := |Pij − 1/2|. The proof of Theorem 1 can be
modified to obtain the following upper bound on the total
number of queries made by Algorithm 1 in the general case
for successfully recovering clusters with high probability,∑

i,j:{i,j}∈Ω

b1
∆2

ij

log

(
nc

b3δ
log

b2
∆ij

)
,

where Ω is the set of queries made and |Ω| ≤ nK.

Modifications in querying In Algorithm 1, to decide if
item i belongs to cluster(j), a random item j is picked as a
representative from that cluster and Query(i, j) is repeated
until a decision can be made about the membership of i. In-
stead of repeating Query(i, j) with the same representative
item, we could pick a random element from cluster(j) for
each repetition. For the assumed model, there is no statis-
tical change from our assumptions and hence the guarantee
provided by Theorem 1 still holds. For the general confusion
matrix case described above, careful bookkeeping is needed
as instead of E(X̄ij(t)) = Pij , we will have E(X̄ij(t)) =
1
t

∑t
s=1 Pij(s). In practice, switching to different represen-

tative elements from a cluster could help avoid being stuck
with a bad representative picked by chance in the beginning
from cluster(j). This is illustrated in Section 6 with exper-
iments that start with initialized clusters and we compare
random versus non-random choices of candidate items for
repeated querying while deciding cluster membership (Ta-
ble 2). While the edge error rates are similar, there is a slight

advantage in total queries for random candidates for repeti-
tion, which arises from occasional bad choices for represen-
tative candidates that the non-random alternative could get
stuck in for some queries.

Active vs. Passive Queries Here, we discuss the pros and
cons of active querying for crowdsourced clustering when
compared to using passive queries. Crowdsourced cluster-
ing using passive queries has been previously approached
with a two-step process (Gomes et al. 2011; Vinayak and
Hassibi 2016; Ibrahim and Fu 2021). In the first step, a ran-
dom or carefully designed pre-determined subset of the

(
n
2

)
pairs of items, say ⌈r

(
n
2

)
⌉ with r ∈ (0, 1] are queried to

partially fill a noisy adjacency matrix. In the second step, a
graph clustering algorithm runs on it. We focus on compu-
tationally efficient (polynomial time) clustering algorithms
for this discussion.

• Active querying succeeds regardless of cluster sizes:
Computationally efficient graph clustering algorithms,
e.g., spectral clustering (McSherry 2001; Rohe, Chatter-
jee, and Yu 2011), convex clustering algorithms (Chen
et al. 2014; Vinayak, Oymak, and Hassibi 2014; Jalali
et al. 2015), have a bottleneck in terms of the size of the
smallest cluster that can be recovered. In particular, the
smallest cluster has to be sufficiently large, i.e., at least
Ω(
√
n), to be recovered. This bottleneck of on the mini-

mum cluster size is conjectured to also be necessary for
any polynomial-time graph clustering algorithm (related
to the hidden clique conjecture). Therefore, using any
known computationally efficient graph clustering algo-
rithms with passive querying can only recover clusters of
size at least Ω(

√
n). On the contrary, the sufficient con-

dition for the exact recovery of the clusters (Theorem 1)
using Algorithm 1) , which is computationally efficient,
holds regardless of the cluster sizes. This is also illus-
trated by our experiments on real crowdsourcing plat-
form (see Section 6, Table 3).

• Active querying algorithm is free of model parame-
ters: For passive querying, the knowledge of p − q and
nmin, or other side information, is needed to a priori set
the number of queries to be made that can guarantee
the exact recovery of clusters (unless we make all

(
n
2

)
queries). On the other hand, our active querying algo-
rithm does not require the knowledge of p, q, K or the
cluster sizes ahead of time to guarantee exact recovery.
The only assumption is that the workers are better than
random guessers (p > 1/2 > q).

• Active vs. passive querying sample complexity: The
sufficient number of queries to guarantee exact recov-
ery of clusters for our active querying algorithm is
O
(
nK
∆2 log n log 1

∆

)
, where ∆ = min{p − 1

2 ,
1
2 − q}.

Let us compare this to the state-of-the-art sufficient con-
ditions for exact recovery of clusters via graph clustering
for SBM (see (Chen et al. 2014; Vinayak, Oymak, and
Hassibi 2014; Jalali et al. 2015) & references there in).

– When the smallest cluster is Θ(
√
n): Passive graph

clustering can guarantee exact recovery using at most
O
(
n2/(p− q)2

)
random queries. In the case of

√
n

clusters of size Θ(
√
n), passive graph clustering takes

at most O
(
n2/(p− q)2

)
random queries to guar-

antee success while our algorithm takes at most
O
(

n1.5

∆2 log n log 1
∆

)
. So, there is room for

√
n gain

in sample complexity for active clustering.
– When the smallest cluster is very large, i.e., when

all the clusters are of size Θ(n): In this case,
since K is a constant, our algorithm takes at most
O
(

n
∆2 log n log

1
∆

)
. Passive graph clustering algo-

rithms can obtain correct clustering by using at most
O
(
n(log n)2/(p− q)2

)
random queries. So, the rel-

ative advantage of active clustering might be limited
here and might not kick in until the dataset sizes are
very large, depending on the hidden constants in these
bounds. From our experiments on real crowdsourcing
platform (see Section 6, Table 2), we observe that pas-
sive querying followed by graph clustering can pro-
vide very good clustering outcomes with much fewer
queries compared to active clustering when cluster
sizes are large. However, the active clustering seems
to pick up more granular differences within each clus-
ter. See Section 6 for more details.

In summary, our active clustering algorithm 1 has advan-
tages in terms of being agnostic to model parameters, and
that its success does not depend on a cluster size bottle-
neck. Active clustering is competitive or better than ran-
dom queries order-wise, but the advantages can be realized
in practice in the regime when the cluster sizes are small,
which is a hard scenario for passive algorithms.
Remark 3. Here, we make a few remarks comparing our
results with related works.

• Near-optimality: The bounds we obtain match the bounds
for the optimal algorithm in (Mazumdar and Saha
2017a) up to a O(log log 1

∆) factor. A similar compar-
ison can be made with the asymptotic optimality re-
sults in (Yun and Proutiere 2014) by observing that the
Kullback-Leibler divergence between Bernoulli random
variable with parameter 1

2 and 1
2 + ∆ is approximately

∆2. Thus, the cost for not knowing the error probabilities
is, at most, a log log 1

∆ factor.
• Computational efficiency: The optimal algorithm

in (Mazumdar and Saha 2017a) is not computationally
efficient and needs the knowledge of error probability
p = 1 − q to set the number of queries a priori.
The hardness in their setting arises from not allowing
repeated queries, leading to the challenge of initializing
clusters that are of size Ω(log n/(1− 2p)2). In contrast,
our algorithm is computationally efficient while being
near-optimal in query complexity.

• Knowledge of error probabilities: The setting in many
related works (Mazumdar and Saha 2017a; Mukherjee,
Peng, and Zhang 2022) assumes the knowledge of error
probability p. This is a very strong assumption as we do
not know this in practice and it is difficult to estimate it
due to heterogeneity in the errors between different pairs.
The key parts of previous algorithms rely on knowing the
error probabilities, e.g., the first phase of the algorithm

Method VI ↓
(K⋆ = 3)

TQ VI ↓
(K⋆ = 30)

TQ

Active 1
(this pa-
per)

0.09± 0.06
(K = 5)

41, 014 0.52± 0.07
(K = 40)

277, 370

(Yun and
Proutiere
2014)
Adaptive

2.74± 0.37
(K = 14)

52, 225 3.63± 0.33
(K = 24)

294, 530

(Yun and
Proutiere
2014)
Passive

3.41± 0.15
(K = 14)

52, 225 3.84± 0.32
(K = 13)

294, 530

K-means,
Passive

0.31± 0.35
(K = 3)

41, 014 3.4± 0
(K = 1)

277, 370

(Vinayak,
Oymak,
and Has-
sibi 2014)
+Kmeans,
Passive

0± 0
(K = 3)

41, 014 3.4±0 (K =
1)

277, 370

Spectral,
Passive

0.04± 0
(K = 3)

41, 014 3.4± 0
(K = 1)

277, 370

(Vinayak,
Oymak,
and Has-
sibi 2014)
+Spectral,
Passive

0.07± 0.22
(K = 3)

41, 014 3.4±0 (K =
1)

277, 370

Table 1: VI for the clustering outcome and the total number
of queries, denoted as TQ in the column header, made af-
ter running Algorithm 1 and passive clustering on simulated
datasets.

in (Mazumdar and Saha 2017a) involves initializing clus-
ters of suitable sizes which relies on these parameters. In
the second phase, the membership of each remaining item
is decided by querying with O(log n/(1 − 2p)2) items
from each cluster using Hoeffding’s inequality, which
again relies on knowing p.

We would like to emphasize that the challenge we address
in this paper concerns how to decide a cluster membership
without knowing p and q. Our routine that uses time-varying
confidence intervals can make the second phase of the al-
gorithms in (Mazumdar and Saha 2017a) practical. How-
ever, the initial phase in their algorithms would still need
the knowledge of error probability.

5 Simulations: Passive vs. Active Querying
Here, we compare the performance of active and passive
clustering algorithms under easy and difficult settings on
simulated data. With n = 900 items to be clustered, we
consider two scenarios varying the number of clusters K⋆

with each cluster of equal size: (1) Easy case with K⋆ = 3
with large cluster sizes, of the order of, Θ(n), (2) diffi-
cult case with K⋆ = 30 with small cluster sizes around
the threshold of Θ(

√
n). To simulate crowdworkers’ an-

swers, we construct a confusion matrix P ∈ [0, 1]n×n for
each scenario. Each entry Pij denotes the probability of

observing an edge between item i and j. We draw Pij ∼
Uniform[0.6, 0.85] if item i and j belong to the same clus-
ter, otherwise Pij ∼ Uniform[0.1, 0.35]. We use variation
of information (VI) (Meila 2007) to measure the difference
between the output clustering and ground truth clustering.
Note that VI ≥ 0 and the smaller the VI, the better with
VI = 0, indicating a perfect match.

We run our active clustering algorithm 1 and adaptive
algorithm in (Yun and Proutiere 2014). We also tried run-
ning the active clustering algorithm in (Mazumdar and Saha
2017a), but it failed to run as the initial stage did not yield
any clusters even after searching over hyper-parameters.
For passive algorithms, we ran the random query algorithm
from (Yun and Proutiere 2014), k-means, spectral cluster-
ing (McSherry 2001), and convex algorithms (Vinayak and
Hassibi 2016). Each algorithm is run 10 times and the results
are shown in Table 1, and discussed below:

• In the easy setting with K = 3 clusters (large clusters),
the passive clustering is on par with our active cluster-
ing algorithm 1. In particular, the spectral clustering and
convex clustering algorithms obtain nearly perfect clus-
tering.

• In the difficult setting (small clusters), our active clus-
tering algorithm 1 outperforms all the other algorithms.
This setting is around the threshold where the passive al-
gorithms struggle to recover the clusters. We also note
that the adaptive algorithm in (Yun and Proutiere 2014)
is designed to work for the easy setting where the cluster
sizes are at least Θ(n). So, it is not surprising that it does
not perform well in the difficult setting. However, both
the active and passive versions of the algorithms in (Yun
and Proutiere 2014) do not perform well in the easy set-
ting either. This is because they rely on estimating a ho-
mogeneous error parameter for each block to decide a
priori the number of repeated queries to make with each
cluster, which affects the accuracy of decisions of cluster
memberships. This highlights the problem of relying on
problem parameters for deciding cluster memberships.

6 Experiments Using Real Data
In this section, we present experimental results using real
datasets and real crowdworkers. We have also conducted ex-
periments using synthetic datasets and simulated workers.

Experiments on a Real Crowdsourcing Platform
For experiments with real crowdworkers, we use Amazon
Mechanical Turk (AMT 2005) platform where crowdwork-
ers answered pairwise queries (Figure 1a). The instructions
we provided are shown in Figure 2. We note that we did not
enforce the gold standard questions. We used all the data we
obtained and paid all the workers who participated regard-
less of accuracy. Histograms of worker error rates for all the
experiments with real crowdworkers are shown in Figure 1b.

The backend and frontend for this active querying system
are implemented using Node.js, embedded Javascript, CSS,
and Bootstrap. We implemented a batched version of Algo-
rithm 1 for efficiency in terms of time to run the experiments
on AMT. Instead of querying one item at a time and waiting

Method Pair
Err.%

VI ↓ mean T TQ

active
(from scratch)

12.5% 1.85 21.98 43, 572

passive
(Vinayak and
Hassibi 2016)

20% 0.23 N/A 17,626

active, initialized
(non-random
repeat)

14.27% 1.42 23.20 29, 189

active, initialized
(random repeat)

14.14% 1.12 22.14 28, 824

Table 2: The percentage of node pairs in error, variation
of information (VI) for the clustering outcome, the aver-
age number of repetitions per query, and the total num-
ber of queries, denoted as TQ, made after running Algo-
rithm 1 on Dogs3 dataset run with the help of real crowd-
workers on AMT. The 2nd row shows the best clustering
result from (Vinayak and Hassibi 2016) (in Table 4) for the
same dataset for passive clustering.

for its cluster membership to be decided, we maintain an ac-
tive querying batch with 30 images to be queried (until the
end, where only a few items remain to be clustered). We also
maintain a yet-to-be-queried set and a clustered set. When a
decision is arrived at for an image in the active querying
batch as to which cluster it belongs to or to form a new clus-
ter, it is moved from the batch to the clustered set, and a ran-
domly chosen image from the yet-to-be-queried set is added
to the batch. Each crowdworker is shown 30 pairs of images
to cluster (Figure 1a shows an example of a query).

To avoid excessive cost by repetition of difficult to cluster
images, we set the maximum number of repetitions to 80.
If an image takes more than 80 queries to decide whether
it belongs to a cluster and happens for all the clusters, it is
considered a difficult to cluster image and put in a separate
bucket of such hard images. We set ζ = 0.0001, δ = 0.3 for
all the experiments unless specified otherwise.

Easy setting: Large cluster sizes Dogs3 dataset (Khosla
et al. 2011; Vinayak and Hassibi 2016) has 473 dogs of 3 dif-
ferent breeds (see Figure 3): Norfolk Terrier (172 images),
Toy Poodle (151 images) and Bouvier des Flanders (150 im-
ages). This dataset has larger cluster sizes.
We ran the following three experiments on AMT for the
Dogs3 dataset:

1. Starting from no images being clustered (referred to as
from scratch).

2. Starting from initialized clusters where we start with the
three clusters initialized with 50 images randomly chosen
from respective breeds. When querying for an image i’s
membership with a cluster(j),

(a) Choosing a random image from cluster(j) as a rep-
resentative and repeating the same query to different
crowdworkers (referred to as initialized, non-random
repeat).

(b) Picking a randomly chosen image form cluster(j) for

(a) Sample of the pairwise queries displayed to the crowdworkers on
Amazon Mechanical Turk (AMT).

0 0.5 1

Crowdworker Error Rate

0

50

100

150

200

250

300

c
o

u
n

t

(a) Dogs3

0 0.5 1

Crowdworker Error Rate

0

50

100

150

200

250
(b) Birds20

(b) Histograms of crowdworkers error rate on AMT for Dogs3 and
Birds20 datasets.

Figure 2: Sample of instructions shown for pair queries.
Note that we did not enforce the gold standard questions.
We used all the data we obtained and paid all the workers
who participated in the tasks.

each repetition to different crowdworkers (referred to
as initialized, random repeat).

The initialization and the order in which the images were
picked to be added to the active query batch were the
same for both the non-random and random repeat ver-
sions.

The results are summarized in Table 2. For compari-
son with passive clustering, we will refer to the results
in (Vinayak and Hassibi 2016) for the same dataset. A total
of 134 images for from scratch, 104 images for initialized
non-random repeat and 38 images for initialized random re-
peat experiments respectively remained as difficult to cluster
in these experiments. The output clusters for from scratch
setting are shown in Figure 4.

Comparing the results for active from scratch and the
best passive clustering result from (Vinayak and Hassibi
2016), we make the following observations. The clustering
outcome for passive querying followed by graph cluster-

Figure 3: Sample images from the three clusters in the
Dogs3 Dataset

ing seems to significantly outperform active querying with
just 40% of the number of queries. Recall from discus-
sions in Section 4 that the theoretical bounds on total query
complexity for active algorithm in large cluster regime is
O
(

n
∆2 log n log

1
∆

)
which when compared to the bound of

O
(
n(log n)2/(p− q)2

)
for passive clustering is only order-

wise better marginally. The data sizes we are working with
here might be too small for such a slight advantage to get re-
flected depending on the hidden constants in these bounds.
We further note that the clustering outcome from active from
scratch has overall 3 large clusters (corresponding to the
three breeds), 5 very small clusters that pick up two groups
of poodles that look very different from the rest, two groups
of terriers that are slightly darker and those with ears pointed
when imaged, and a group of Bouvier des Flanders and 6
outliers (with only one image per cluster). So, while the clus-
tering outcome of Algorithm 1 overall does not match the
ground truth of three clusters very well compared to passive
querying, it does seem to capture more granular nuances in
the images.

By comparing the results for the setup of initialized non-
random repeat and random repeat, we note that there is no
large difference in the percentage of pairs that were in er-
ror and the average number of repetitions made per query.
An issue that could arise when the representative of a cluster
is fixed, as is the case in the non-random repeat setting, is
that if we are unlucky to pick a bad/atypical example from
the cluster as the representative, it can lead to either error
or exceeding the difficult query repeat limit. Whereas, in the
random repeat set up, this is usually ameliorated as a ran-
dom representative is chosen for each repetition. This is also
reflected in the clustering outcome, where the random repeat
setting performs slightly better than that of the non-random
repeat. We note that in both cases, if the image being queried
itself is a difficult image, then it is hard to avoid a large num-
ber of repetitions.

Hard setting: Small cluster sizes Birds20 is a dataset we
created using a subset of Caltech-UCSD Birds dataset (Wah
et al. 2011). It has 125 images of birds from 20 different
species: American Goldfinch (6), Arctic Tern (5), Baltimore
Oriole (7), Blue Jay (4), Cardinal (10), Eared Grebe (3),
Eastern Towhee (5), Fish Crow (4), Green Jay (6), Groove
Billed Ani (6), Horned Puffin (5), House Sparrow (10),
Laysan Albatross (5), Least Tern (5), Mallard (10), Pileated
Woodpecker (4), Red Winged Blackbird (10), Rufous Hum-
mingbird (5), White Breasted Kingfisher (10), and White
Pelican (5). The number of images in each species cluster
is shown in the bracket. This dataset has very small cluster
sizes and allows us to investigate the performance of Algo-

Figure 4: Clusterings obtained by running Algorithm 1 on the Dogs3 dataset from scratch.

(a)

(b)

Figure 5: Clustering obtained by running Algorithm 1 on Birds20 dataset from scratch.

Method Pair
err.%

VI ↓ mean
T

TQ

active,
from scratch

1.69% 0.88
(K = 20)

12.34 15, 160

passive
full,
(7750 edges ×1)

15.6% 1.64 ±
0.11
(K = 6)

N/A 7, 750

passive
subset repeat,
(5054 edges ×3)

18.4% 1.64 ±
0.13
(K = 11)

N/A 15, 162

Table 3: The percentage of node pairs in error, VI for the
clustering outcome, the average number of repetitions per
query, and the total number of queries, denoted as TQ, made
after running Algorithm 1 and passive clustering on Birds20
dataset run with the help of real crowdworkers on AMT.

rithm 1 in small-cluster-regime in practice.
We ran the following three experiments on AMT for the
Birds20 dataset:
1. Active clustering with the batched implementation of Al-

gorithm 1 starting from no images being clustered (re-
ferred to as from scratch).

2. Passive querying followed by graph clustering with

(a) All
(
125
2

)
= 7750 edges queried once (referred to as

passive full).
(b) Randomly chosen subset of edges with each edge

queried thrice (referred to as passive subset repeat).
We chose 5054 edges randomly so that with 3 repeti-
tions, it matches the total queries made in active from
scratch setting and used majority voting to get the ad-
jacency matrix.

We ran k-means, spectral clustering (McSherry 2001)
and improved convex algorithm (Vinayak, Oymak, and
Hassibi 2014) (followed by k-means and spectral clus-
tering) for graph clustering on the passively queried ad-
jacency matrices. The results for these experiments with
Birds20 dataset are summarized in Table 3. See Figure 4
for the clusters output by our active clustering algorithm.
For passive clustering, we present the best results with
the number of clusters that are resolved by the respective
adjacency matrices.

Comparing the outcome of Algorithm 1 (active from
scratch) with passive clustering, we make the following ob-
servations. In this small cluster regime, active Algorithm 1
provides much better clustering outcomes than passive clus-
tering. We note that Algorithm 1 recovered 20 clusters over-
all. In contrast, the adjacency matrices filled by passive full
and passive repeat could only resolve 6 and 11 clusters, re-
spectively. This is due to the limitations of efficient cluster-
ing algorithms with respect to recovering small clusters (see
Section 4).

7 Conclusion
In this work, we considered the problem of clustering a set
of items into disjoint clusters with the help of noisy crowd-
workers who can answer pairwise comparison queries of

type “Are items i and j in the same cluster?”. We proposed a
practical active clustering algorithm towards this goal and,
under mild assumptions, provided bounds on query com-
plexity that guarantee the exact recovery of the clusters. The
proposed active algorithm does not need the knowledge of
any problem parameters, in particular the error probabili-
ties, number of clusters, or size of the clusters. We imple-
mented this algorithm on a real crowdsourcing platform to
demonstrate its efficacy and study its performance in large
and small cluster regimes. While the theoretical bound on
the query complexity is order-wise better for the active clus-
tering algorithm when the clusters are large, passive algo-
rithms can, in fact, provide very good clustering outcomes
with much fewer queries in practice. The main advantage of
the active clustering algorithm seems to be in the case when
there could be clusters of very small sizes that passive clus-
tering algorithms will fail to recover. A hybrid approach that
gets the best of both worlds would be useful to develop, and
we leave it to future work.

Acknowledgements
We thank Nihar B. Shah for insightful discussions and com-
ments on the paper. This work was partially supported by
NSF grants NCS-FO 2219903 and NSF CAREER Award
CCF 2238876.

References
AMT. 2005. Amazon Mechanical Turk. https://www.mturk.
com/. Accessed: 2022-10-12.

Chen, Y.; Jalali, A.; Sanghavi, S.; and Xu, H. 2014. Cluster-
ing partially observed graphs via convex optimization. Jour-
nal of Machine Learning Research, 15(1): 2213–2238.

Condon, A.; and Karp, R. M. 2001. Algorithms for graph
partitioning on the planted partition model. Random Struct.
Algorithms, 18(2): 116–140.

Gomes, R. G.; Welinder, P.; Krause, A.; and Perona, P. 2011.
Crowdclustering. In Advances in Neural Information Pro-
cessing Systems 24, 558–566.

Heckel, R.; Shah, N. B.; Ramchandran, K.; and Wainwright,
M. J. 2019. Active ranking from pairwise comparisons and
when parametric assumptions do not help. The Annals of
Statistics, 47(6): 3099–3126.

Holland, P. W.; Laskey, K. B.; and Leinhardt, S. 1983.
Stochastic blockmodels: First steps. Social Networks, 5(2):
109 – 137.

Ibrahim, S.; and Fu, X. 2021. Mixed Membership Graph
Clustering via Systematic Edge Query. IEEE Transactions
on Signal Processing.

Jalali, A.; Han, Q.; Dumitriu, I.; and Fazel, M. 2015. Rela-
tive Density and Exact Recovery in Heterogeneous Stochas-
tic Block Models. arXiv:1512.04937.

Jamieson, K. G.; Malloy, M.; Nowak, R.; and Bubeck, S.
2014. lil’ UCB : An Optimal Exploration Algorithm for
Multi-Armed Bandits. In COLT, 423–439.

Khosla, A.; Jayadevaprakash, N.; Yao, B.; and Fei-Fei, L.
2011. Novel Dataset for Fine-Grained Image Categoriza-
tion. In First Workshop on Fine-Grained Visual Catego-
rization, IEEE Conference on Computer Vision and Pattern
Recognition.
Mazumdar, A.; and Saha, B. 2017a. Clustering with noisy
queries. Advances in Neural Information Processing Sys-
tems, 30.
Mazumdar, A.; and Saha, B. 2017b. Query complexity of
clustering with side information. Advances in Neural Infor-
mation Processing Systems, 30.
Mazumdar, A.; and Saha, B. 2017c. A Theoretical Analysis
of First Heuristics of Crowdsourced Entity Resolution. In
Thirty-First AAAI Conference on Artificial Intelligence.
McSherry, F. 2001. Spectral Partitioning of Random Graphs.
In FOCS, 529–537. IEEE Computer Society. ISBN 0-7695-
1390-5.
Meila, M. 2007. Comparing Clusterings—an Information
Based Distance. J. Multivar. Anal., 98(5): 873–895.
Mukherjee, C. S.; Peng, P.; and Zhang, J. 2022. Recovering
unbalanced communities in the stochastic block model with
application to clustering with a faulty oracle. arXiv preprint
arXiv:2202.08522.
Raykar, V. C.; Yu, S.; Zhao, L. H.; Valadez, G. H.; Florin,
C.; Bogoni, L.; and Moy, L. 2010. Learning From Crowds.
J. Mach. Learn. Res., 11: 1297–1322.
Rohe, K.; Chatterjee, S.; and Yu, B. 2011. Spectral cluster-
ing and the high-dimensional stochastic blockmodel. Annals
of Statistics, 39(4): 1878–1915.
Sorokin, A.; and Forsyth, D. 2008. Utility data annotation
with Amazon Mechanical Turk. In Computer Vision and
Pattern Recognition Workshops, 2008. CVPRW '08.
IEEE Computer Society Conference on, 1–8. IEEE. ISBN
978-1-4244-2339-2.
Verroios, V.; and Garcia-Molina, H. 2015. Entity Resolu-
tion with crowd errors. In ICDE, 219–230. IEEE Computer
Society.
Vesdapunt, N.; Bellare, K.; and Dalvi, N. 2014. Crowd-
sourcing algorithms for entity resolution. Proceedings of
the VLDB Endowment, 7(12): 1071–1082.
Vinayak, R. K.; and Hassibi, B. 2016. Crowdsourced Clus-
tering: Querying Edges vs Triangles. In Advances in Neural
Information Processing Systems, 1316–1324.
Vinayak, R. K.; Oymak, S.; and Hassibi, B. 2014. Graph
Clustering With Missing Data: Convex Algorithms and
Analysis. In Neural Information Processing Systems Con-
ference (NIPS).
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The Caltech-UCSD Birds-200-2011 Dataset.
Technical Report CNS-TR-2011-001, California Institute of
Technology.
Wang, J.; Kraska, T.; Franklin, M. J.; and Feng, J. 2012.
Crowder: Crowdsourcing entity resolution. Proceedings of
the VLDB Endowment, 5(11): 1483–1494.

Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010.
The Multidimensional Wisdom of Crowds. In Neural Infor-
mation Processing Systems Conference (NIPS).
Yun, S.-Y.; and Proutiere, A. 2014. Community detection via
random and adaptive sampling. In Conference on learning
theory, 138–175. PMLR.

