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Abstract

We introduce the problem of learning distribution of user preference over a popula-
tion via pairwise comparison of a set of items. We consider the setting where each
individual only answers one pairwise comparison. In this scenario, learning each
user’s individual preference is impossible. Hence the question of interest is what can
we learn about the distribution of user preferences over the population? Since we
are limited to binary answers to pairwise comparison queries, we focus on learning
the mass of the underlying distribution in the regions defined by the intersecting
midpoint hyperplanes between the pairs of items in the query set. We investigate
this fundamental question in both 1-dimensional and higher dimensional settings
under noiseless response settings. We show that the problem is identifiable in a 1-
dimensional setting and provide recovery guarantees. We also show that the problem
is not identifiable for higher dimensional settings. We propose using a regularized re-
covery for higher dimensional settings and provide guarantees on the total variation
distance between the true mass in each of the regions and the distribution learned
via regularized constrained optimization problem. We validate our findings through
simulations and experiments on real datasets.

1 Introduction

Learning user preferences via pairwise comparison queries of type “Do you prefer item a
or b?” is widely used in various applications, such as political science, to model voters’
political preferences and to predict their voting behavior, and in recommendation systems,
to model users’ preferences for products or services [28, 14, 1, 21, 26]. The ideal point
model [10, 22, 13, 32, 36, 9] often used in preference learning aims to model an individual’s
preferences over a set of alternatives by representing them as a single ”ideal point” in a
multidimensional space. The basic idea is that the closer an alternative is to the ideal point,
the more preferred it is by the individual. The ideal point is usually estimated using data
collected from the individual, such as their choices, ratings, or rankings.

Formally, the ideal point model is described as follows. Let x1, . . . ,xm ∈ Rd denote the
known feature representations of m items. Let u ∈ Rd represents the preference point of an
individual. The answer to the preference query Q(a, b) is 1 if the individual prefers the item
a over b and -1 otherwise. The ideal point model assumes that Q(a, b) = 1 if the individual’s
preference point u is closer to the representation of item a, xa than item b, xb. That is,
||xa − u||2 < ||xb − u||2. The ideal point model with pairwise comparison queries is also
well studied in the ranking literature. Several algorithms have been proposed to rank the
preferences of the items of an individual [17, 22, 35, 30, 20].

In this work, we consider the problem of learning from diverse populations in preference
learning. Many works on preference learning have focused on universal model, where the
data from everyone is pooled in together to learn a single preference point on average for
the population [18, 23, 5]. However, different individuals can have different preferences.
While one can focus on learning an individual’s preference separately, it takes O(d) queries
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in d−dimensions, which can be prohibitively large due to cost, cognitive overload or privacy
concerns. In many applications, learning a prior distribution over the user preference is more
useful than learning each individual preference point. For example, if an ice cream company
wants to come up with new flavors, knowing which regions of flavor profiles have more mass
is beneficial in the discovery of new ice cream flavors. In a broader sense, learning a prior
distribution of user preferences is advantageous in many downstream tasks, including, but
not limited to, comparing preferences between distinct populations and addressing the cold
start problem in recommendation systems. Information about a prior distribution can serve
as a valuable prior in future inference tasks.

We investigate the problem of learning the distribution of user preferences using pairwise
comparisons. In particular, our goal is to understand what we can learn about the dis-
tribution of user preferences with only one query per individual. Since we are limited to
binary answers to pairwise comparison of m items, our goal is to learn the mass of the
underlying distribution in the regions (polytopes) defined by the intersecting midpoint hy-
perplanes between the

(
m
2

)
pairs of items. If we can query O(d log d) or O(m2) pairs, we

can localize the user preference point to one of the regions. So, if we sample a large number
of individuals from the population and if we can query each of them with a sufficiently large
number of queries, we can build a histogram of the underlying distribution in these regions.
However, due to limitations discussed before, querying large number of comparison pairs
per individual can be prohibitive due privacy issues, limited interaction of individual with
the platform, cognitive overload and cost.

Our contribution: We introduce the novel problem of learning the distribution of user
preferences over the population via pairwise comparison queries with only one response
per individual and investigate the fundamental questions of identifiability and recovery
guarantees leading to the following contributions:

• We show that the problem is identifiable in 1D setting and is not identifiable in higher
dimensional setting.

• For the 1D setting, we provide recovery guarantees for the mass in the regions defined by
the intersection of hyperplanes at the mid-point of pairs of items used for queries.

• For the higher dimensional setting, we propose to use regularized recovery and provide
guarantees on the total variation distance between the true mass in each of the regions and
the estimated mass in terms of the regularization parameter and the interplay between
the true mass and regularization.

• We provide experiments on synthetic datasets and real datasets that validate our results
and observations.

Our work leads to several interesting open questions regarding learning from diverse popu-
lations in preference learning.

Related works: Learning a user preference point up to ϵ error with pairwise comparisons
requires O(d/ϵ log d) queries under mild assumptions of coverage of query items on the space
of preferences [25]. Recently, some works have considered the problem of simultaneously
learning an unknown metric and a user preference point. Work in [36] proposed an alter-
nating minimization algorithm for this problem. In [8], a more general problem setting with
multiple individuals with different user preference points is considered. They propose a con-
vex optimization based algorithm to learn the common unknown metric and the unknown
different preferences of multiple users simultaneously with a sample complexity O(d) per
person if the number of users is of the order of d. Basically, each of these requires at least
O(d) queries per user as the goal in these works is to learn individual preference points.

2



However, querying multiple pairs per user is an hurdle in various situations, e.g. privacy
concerns, as it requires tracking a user over time, cognitive overload, and cost in obtaining
answers to multiple queries, especially in larger dimensional spaces.

In a recent work [33], the authors introduced the problem of learning distribution of prefer-
ences over the population using distance queries rather than pairwise comparisons. When the
distance measurements are available, they show that the problem of learning the underlying
distribution of preferences is identifiable and provide recovery guarantees for 1-dimensional
setting. They also provide numerical simulations that suggest similar results might hold for
higher dimensional settings and network structures.

2 Problem Setting

Let m denote the number of items and Sm := {x1,x2, ...,xm} where xi ∈ Rd denotes the
known feature representations of the items. Under the ideal point model, each individual
preference is also modeled as a point in the same space. Let P ⋆ denote the unknown
underlying distribution of user preferences. Each individual l has an unknown preference

ul ∈ Rd. We assume that ul
i.i.d.∼ P ⋆. We further assume that the answer to the pairwise

query to an individual l is i if item xi is closer to their preference point ul than xj . That

is, y
(l)
ij = 1 if dist(xi,ul) < dist(xj ,ul) and y

(l)
ij = −1 otherwise.

Given answers to pairwise queries of the form “do you prefer item i or item j?”, our goal
is to understand what we can learn about P ⋆. Note that given a set of m items, there are(
m
2

)
possible pairs for comparison. Each pair of items creates a hyperplane perpendicular

at the midpoint joining the two items. Let hij denote the hyperplane perpendicular to the
midpoint of the pairs (i, j) with i < j. These hyperplanes carve out regions in Rd that
are polytopes. Let H(Sm) denote the set of partitions of Rd that is created by the set of
hyperplanes arising from items in Sm and |H(Sm)| denotes the number of these regions.
Note that for m items in Rd, |H(Sm)| = O(m2d) [6].

Let p⋆
H(Sm) denote the true mass in each of the regions arising due to P ⋆ which is the true

underlying distribution of user preferences. Let q⋆ij denote the mass of P ⋆ to the side of xi

of the hyperplane hij and q⋆ji = 1− q⋆ij is the mass to the other side of the same hyperplane

hij . Let q⋆ ∈ R2(m2 ) denote the vector that stacks qij ’s for the ordered pairs, and then the
qji’s. We note that the mass on either side of the hyperplanes, q⋆, can be written as a linear
combination of the mass in the regions p⋆

H(Sm). That is, we can construct the following
linear system of equations

M p⋆
H(Sm) = q⋆, (1)

where M is a 2
(
m
2

)
× |H(Sm)| binary matrix where in each row, the 1’s indicate the regions

that contribute to the side of the hyperplane. Each column of M corresponds to a region
(polytope) created by the intersection of the hyperplanes. Figure 1(a) shows an example of
partition of R2 with 3 hyperplanes h1,2, h3,4 and h5,6. With the enumeration of the regions
shown in Figure 1(a), we can construct the binary matrix M (see Figure 1(b)), where the
first 3 rows represent regions corresponding to h1,2 towards the side of item 1, h3,4 towards
the side of item 3 and h5,6 towards the side of item 5 respectively. Similarly, the last rows 3
represent regions corresponding to the other side of each of the hyperplanes. We also note
that each column gives positions of the corresponding region pi in terms of hyperplanes
h1,2, h3,4 and h5,6.
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Figure 1: (a) Example of regions (polytopes) formed by intersection of three hyperplanes. (b) The
corresponding matrix M. (c) The corresponding graph where the regions are the nodes.

For each pair (i, j), by querying a random sample of people, we can estimate the amount of
mass P ⋆ has to the right and to the left of the hyperplane at the midpoint of (i, j), denoted
by hij . Given these estimates, the goal is to estimate the mass of P ⋆ in the regions of
intersections of hyperplanes H(Sm).

3 Identifiability

In this section we discuss the identifiability results for the problem setting described in
Section 2 for the 1-dimensional case and higher-dimensional cases. Note that p⋆

H(Sm) is

identifiable if it is the unique probability vector of size |H(Sm)| that gives rise to q⋆. So,
p⋆
H(Sm) is not identifiable if there exist a p ̸= p⋆

H(Sm) such that Mp = Mp⋆
H(Sm).

3.1 One Dimensional Setting

Consider the setting when the items are represented in a 1-dimensional Euclidean space.
Given m items, there are

(
m
2

)
pairs for comparison which divide the space into

(
m
2

)
+ 1

partitions. Therefore, the linear system of equations in (1) has
(
m
2

)
+ 1 columns.

As we describe in Section 2, we assume that the answer to the pairwise query to an indi-

vidual l is i if item xi is closer to the preference point ul than xj . Basically, y
(l)
ij = 1 if

dist(xi,ul) < dist(xj ,ul) in the noiseless case. Then, we consider the corresponding hy-
perplane hij and the mass to the left of hij , denoted by q(h<

ij). Under the assumption that
items and users are supported on a 1-dimensional Euclidean space, hyperplanes in H(Sm)
are lines passing through midpoints

xi+xj

2 . Therefore, we can infer that q(h<
ij) =

∑
k∈h<

ij
pk,

i.e., q(h<
ij) becomes equal to the cumulative distribution function (CDF) of the distribution

p∗ evaluated at the point
xi+xj

2 . Therefore, the binary matrix M can be written as a
concatenation of two triangular matrices, where one is a lower triangular matrix with all
diagonals (except the last one) and elements below the main diagonal are 1 and the other is
an upper triangular matrix with all diagonal elements (except the first one) and all elements
above the main diagonal is 1. Since M is full column rank by construction, linear system
of equations in (1) is identifiable in 1D and we can write the distribution p⋆

H(Sm), i.e., true

mass in regions, as p⋆
H(Sm) = (MTM)−1MTq⋆ in terms of the true q⋆.

3.2 Higher Dimensional Settings

In this section, we discuss the identifiability of the linear system of equations in (1) for
dimensions d ≥ 2, where items and users are supported on d-dimensional Euclidean space.
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We show that the problem setting is not identifiable in higher dimensions and provide the
following proposition.

Proposition 1. For d ≥ 2, the binary matrix M which of size 2
(
m
2

)
× |H(Sm)| has

rank(M) =
(
m
2

)
+ 1 and the solution to the linear system of equations (1) is not unique

and hence p⋆
H(Sm) is not identifiable. We note that, since rank(M) =

(
m
2

)
+ 1, for any

k >
(
m
2

)
+ 1, there exists at least another solution to the equation (1).

As a result, we note that uniqueness cannot be guaranteed for all k-sparse distributions.
Additionally, we make the following remark based on the fact that M is a column-regular
matrix, i.e. each column of M has exactly the same number of 1’s.

Remark 1. Robust Null Space Property (RNSP) is proposed as a sufficient condition for
basis pursuit approach in compressed sensing literature [16, 15]. Later, in [24], authors
proposed sufficient conditions for a column-regular binary matrix to achieve RNSP, which are
the best sufficient conditions for column-regular binary matrices to the best of our knowledge.
According to Theorem 9 in [24], a column-regular binary matrix satisfies RNSP when k<
dL/ρ, where dL is the number of 1’s in each column and ρ is the maximum inner product
among columns. Our binary matrix M is column-regular binary matrix with

(
m
2

)
1’s in

each column. Since there are neighboring regions, i.e., regions that has only one different
coordinate, maximum inner product among columns is

(
m
2

)
−1. Therefore, RNSP is achieved

when k = 1.

3.2.1 Graph Regularization

In the face of non-identifiability, additional structural assumptions are needed for learning
the mass in the regions, i.e., polytopes, p⋆

H(Sm). We note that while p⋆
H(Sm) is a O(m2d)-

dimensional probability vector, the entries corresponding to mass in regions have a geometry
in the space X ⊆ Rd (recall Figure 1(a)) that gives a notion of near-by and far-away
regions. We construct a connected undirected graph with the polytopes as the nodes and
two nodes are connected by an edge if they share a (d− 1)-dimensional face between them
(see Figure 1(c)). We propose using a graph regularizer (normalized by volume to account
for differences in the sizes of the regions) to recover p⋆

H(Sm). Intuitively, this means that we

expect preferences to accumulate in spatially nearby regions (Figure 1(c)). Several works in
signal recovery have used graph regularization to exploit local invariance in data as a side
information and find a locally invariant representation of the data [4, 7, 19].

We note that this proposed graph structure can be constructed using the matrix M. Recall
that the rows of M correspond to hyperplanes and the columns correspond to the regions
(polytopes) in H(Sm) providing a binary encoding for them by construction. That is, each
entry of a given column ofM determines which side of a hyperplane the corresponding region
is located on. Therefore, there exists an edge between nodes corresponding to the regions
that has only two different entries in their hyperplane coordinates, i.e., only if one pairwise
comparison yields opposite results. Accordingly, neighboring regions have common (d− 1)-
dimensional faces in between. We define the weight matrix W for the graph regularization
in the following way,

Wi,j =
∥M:,i −M:,j∥−1

1

αiαj
, (2)

where α = [α1, α2, . . . , α|H(Sm)|]
T represent volumes of regions with corresponding mass

p = [p1,p2, . . . ,p|H(Sm)|]
T respectively. We can define different weight matrices as long as
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entries are inversely proportional to the distances between nodes. Heat kernel weighting [4],
0-1 weighting [7] are some of the widely used ones in the literature. We use W defined in
equation (2) and form following graph Laplacian regularizer:

1

2

|H(Sm)|∑
i=1

|H(Sm)|∑
j=1

|pi − pj |2Wi,j =: pTDp− pTWp =: pTLp, (3)

where Di,i =
∑|H(Sm)|

j=1 Wi,j , Di,j = 0 when i ̸= j and L = D−W.

Essentially, we enforce the changes in neighboring regions to be smooth, which is similar to
the local invariance property considered in [4, 7, 19]. We note that the eigenvectors of L are
mutually orthogonal by spectral theory. Then, we conclude that orthogonal eigenvectors of
nonzero eigenvalues force the candidate of the solution p to be close to the distribution α
by diminishing possible directions other than α, where α is the normalized α. Note that
regions in H(Sm) are not similar to an equally spaced grid. Therefore, we use a weighted
version of the regularizer in (3) with respect to the volumes of the regions in H(Sm). We
can write the whole objective function as follows:

f(p) = ∥Mp− q∥22 + λpTLp, (4)

which induces the following optimization problem:

minimize
p ∈ R|H(Sm)|

1

2
||Mp− q||22 +

λ

2
pTLp (5a)

subject to 1Tp = 1, (5b)

pi ≥ 0, i = 1, . . . .|H(Sm)|. (5c)

Proposition 2. The convex optimization problem in (5) has a unique solution.

We prove that the regularized problem is identifiable in Proposition 2 and show recovery
guarantees in the next section.

4 Recovery Guarantees

In this section, we provide recovery guarantees for the 1-dimensional setting and higher-
dimensional settings by bounding the total variation distance between p⋆

H(Sm) and the re-

covered mass in partitions H(Sm).

4.1 One Dimensional Setting

Recall from Section 3.1, that for 1-dimensional case, we have p⋆
H(Sm) = (MTM)−1MTq⋆

with the true q⋆. However, we usually only have finite samples and hence only have an
estimate q̂ from observations. Therefore, we use the following constrained optimization to
estimate pH(Sm) using q̂,

minimize
p ∈ R|H(Sm)|

1

2
||Mp− q̂||22 (6a)

subject to 1Tp = 1, (6b)

pi ≥ 0, i = 1, . . . , |H(Sm)|. (6c)
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Since M has full column rank in the 1-dimensional case, the objective function of the given
optimization problem is strongly convex. Therefore, the above optimization problem in (6)
is guaranteed to have a unique solution. We provide the following recovery guarantee for
the noiseless setting in the 1-dimensional case.

Theorem 4.1. When items and users are supported on a 1-dimensional Euclidean space,
with probability at least 1−δ, the total variation distance between p⋆

H(Sm) and the recovered

mass p̂H(Sm) in partitions H(Sm) is bounded as follows,

TV(p⋆
H(Sm), p̂H(Sm)) ≤

√
|H(Sm)| cond(M, 1)√

2
(
m
2

) max

{√
40

n
,

√
25 log (3/δ)

n

}

where cond(M, 1) is the condition number of M with respect to l1-norm and n is the total
number of users.

4.2 Higher Dimensional Settings

Recall that in 2-dimensions and in higher-dimensional cases, the problem is not identifiable.
In particular, the matrix M does not have a full column rank. Therefore, the optimization
problem given in (6) corresponds to an underdetermined least squares problem with unit
simplex constraint. In Section 3.2, we show that we cannot guarantee exact recovery of
p⋆
H(Sm) even if q⋆ is provided, since the linear system of equations in (1) is not identifiable,

unlike th 1-dimensional setting. Therefore, in this section, we first provide the bound for
the total variation distance between p⋆

H(Sm) and the recovered mass in partitions H(Sm)
under the condition that q⋆ is provided. Then, we extend that bound to the case where
we only have estimated q̂. We propose using the optimization problem given in (5). This
convex optimization problem can be rewritten as

minimize
p ∈ R|H(Sm)|

1

2
pT (MTM+ λL)p− pTMTq⋆ (7a)

subject to 1Tp = 1, (7b)

pi ≥ 0, i = 1, . . . , |H(Sm)|. (7c)

Since MTM + λL is a positive definite matrix, there exists a unique real upper triangular
matrix R with positive diagonal entries, where MTM+λL = RTR by Cholesky decomposi-
tion. Therefore, we can write the problem in (7) as a constrained least squares optimization
problem:

minimize
p ∈ R|H(Sm)|

1

2
||Rp− b||22 (8a)

subject to 1Tp = 1, (8b)

pi ≥ 0, i = 1, . . . , |H(Sm)|, (8c)

where b = R−TMTq⋆. Then, we provide the following recovery guarantees for the given
problem.

Theorem 4.2. Suppose items and users are supported on 2- or higher-dimensional Eu-
clidean space and q⋆ is provided. Then, with probability at least 1−δ, the total variation dis-
tance between p⋆

H(Sm) and the recovered mass in restricted regions, i.e. p̂H(Sm), is bounded
as follows,

TV(p⋆, p̂H(Sm)) ≤
λ

2

√
|H(Sm)|∥R−1∥22∥L∥2.
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However, we usually do not have access to true q⋆. We use an estimated value from the
sampled data, q̂, and use the least squares optimization setting in (8) with b = R−TMT q̂.
Similarly, we write the following theorem to provide recovery guarantees for the given least
squares problem.

Theorem 4.3. We suppose that items and users are supported on 2- or higher-dimensional
Euclidean space. Then, with probability at least 1−δ, the total variation distance between
p⋆
H(Sm) and recovered mass p̂H(Sm) in partitions H(Sm) is bounded as follows,

TV(p⋆
H(Sm), p̂H(Sm)) ≤ λ

2

√
|H(Sm)|∥R−1∥22∥L∥2

+

√
|H(Sm)|

(
m
2

)
2

∥R−1∥2∥MT ∥2 max

{√
40

n
,

√
25 log (3/δ)

n

}
where n is the total number of users.

5 Bounds on the Mass

In this section, we show that we can obtain lower and upper bounds for each entry of p⋆
H(Sm)

without requiring any additional assumptions. We first provide lower and upper bounds in
Proposition 3 under the condition that q⋆ is provided. Then, we extend these results to the
scenario where we only have estimated q̂. We suppose that Kj is the position of rows of M
whose j-th entry is 1.

Proposition 3. Each entry of p⋆
H(Sm) can be bounded below and above as follows

max

{
0,max

i∈Kj

q⋆
aibi −MT

i,:Q
j
0

}
≤ p⋆

H(Sm)j
≤ min

i∈Kj

q⋆
aibi , (9)

where Mi,: is the ith row of M and

Qj
0 = [min

i∈K1

q⋆
aibi , . . . min

i∈Kj−1

q⋆
aibi , 0, min

i∈Kj+1

q⋆
aibi , . . .min

i∈Kl

q⋆
aibi ]

T .

Note that in practice, we only have access to estimated q̂ from the observations. Therefore,
we use the following lemma to obtain the lower and upper bounds for the entries of p⋆

H(Sm)

in terms of the estimated q̂ and the confidence intervals.

Lemma 1. (Lemma 3 in [11]) Let v ∈ Rz be the probabilities corresponding to a multinomial
random vector with support size z. Let v̂ denote the empirical estimate of these probability
values from N i.i.d. samples drawn from p. Then, for all ε ≥

√
20z/N ,

Pr (||v̂ − v||1 > ε) ≤ 3e−Nε2/25.

Lemma 1 together with Proposition 3 above yields the following proposition.

Proposition 4. We suppose that each query is answered by the same number of people.
Then, with probability at least 1− δ, each entry of p⋆

H(Sm) can be bounded below and above
as follows:

max

{
0,max

i∈Kj

q̂aibi −MT
i,:Q̂

j
0 − (|Mi,:|1 + 1)γ

}
≤ p⋆

H(Sm)j
≤ min

i∈Kj

q̂aibi + γ (10)
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where γ =

√
log (4(m2 )/δ)

2np
and np represents the number of people who answer each query.

6 Numerical Results

We evaluate the proposed approach for both simulated and real data. We provide numerical
simulations in one-dimensional and higher-dimensional settings and show the total variation
distance between p⋆

H(Sm) and the recovered mass in partitionsH(Sm). Similarly, we evaluate

our results on two different real datasets and provide recovered mass in partitions H(Sm)
for the corresponding populations.

6.1 Simulations

We start with noiseless and noisy one-dimensional settings and use the following set of true
distributions (see Figure 2). We observe the relationship between the number of items and

Figure 2: True distributions used in simulations.

the total variation error for the recovered mass in the partitions H(Sm) as well as between
the number of people asked per query np and the error. We use CVXPY [12, 2] to solve
the constrained least-squares problem given in (6) and its regularized version in (8). All
simulations are run on Python 3.9.

1D Simulations: We fix the number of items, m = 5, and uniformly sample them from the
interval of [−1, 1]. We vary the number of users per pair from 102 to 105 and repeat each
setting 100 times. We employ a noise model where we flip a user’s answer with probability
0.1. We provide the 1D noiseless and noisy simulation results in Figure 3.

As the number of people asked per query, np, increases, the TV distance between p⋆
H(Sm)

and p̂H(Sm) gets smaller as shown in Figure 3. In Figure 4, we fix the number of users

Figure 3: TV(p⋆
H(Sm), p̂H(Sm)) for 4 distributions in 1D

per pair to 1000 and provide the total variation distance between the recovered mass in
partitions H(Sm) and the true underlying distributions with varying m for both 1D noisy
and noiseless settings.
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Figure 4: The total variation distance between the recovered distributions and the true
distributions for the 4 distributions in noiseless and noisy 1D settings. Bernoulli line refers
to coin-flipping noise.

2D Simulations: We use the same set of underlying distributions in 2D, where the items
are drawn uniformly from [−1, 1]2. Unlike in 1D, we cannot calculate the true mass of each
region straightforwardly. Therefore, we employ the Monte Carlo method, where we sample 1
million points from the population distribution and use the fraction of points in each region
as the corresponding true probability. In Figure 5, we provide the total variation error with
a fixed m by varying the number of users per pair from 102 to 105 and repeating each setting
100 times.

Figure 5: The total variation between the recovered distributions and the true distributions
for the 4 distributions in noiseless and noisy settings 2D settings.

Similar to 1D, we fix the number of users per pair to 1000 and provide total variation error
for both 2D noisy and noiseless settings with varying m in Figure 6.

Figure 6: The total variation distance between the recovered distributions and the true
distributions for the 4 distributions in noiseless and noisy 2D settings.

nD Simulations: To investigate the affects of dimensionality, we fix m = 5 and number of
users per pair to 1000. Varying the dimension from 2 to 6, we plot the total variation error
in Figure 7.

10



Figure 7: The total variation between the recovered distributions and the true distributions
for the 4 distributions in noiseless and noisy 2D settings.

Bounds on the Mass: Referring to Section 5, we provide the following plot of the lower-
upper bounds for p⋆

H(Sm). We uniformly sample 5 items from [−1, 1]2 and fix them so that
we can repeat the algorithm 100 times.

Figure 8: Upper and lower bounds for p⋆
H(Sm).

6.2 Experiments

We use two different real datasets to validate our results.

Figure 9: The total variation distance between recovered distributions and the true distri-
butions for the colors dataset. Left: fixing number of users per pair. Right fixing m.

Colors dataset: Colors dataset is formed by answers to pairwise queries from 48 different
users/respondents. Each person was asked to order 37 different colors, which enables us to
have all possible pairwise queries for each person. In this dataset, each color is considered
as a 3-dimensional vector in CIELAB color space (lightness, red vs. green, blue vs. yellow).
For our experiment, we use the 1D user embedding of the color data set learned from [9].
Then, we project the CIELAB color space onto the 1D user embedding space.
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We fix m = 5 to consider some subset of colors and uniformly sample {10, 100, 1000, 10000}
users from all 48 users for each pair to estimate p̂H(Sm). We provide the total variation
distance between recovered mass p̂H(Sm) and p⋆

H(Sm) in Figure 9. Similarly, we fix the
number of users per pair and show the change in the total variation error with varying
numbers of colors, i.e. m ∈ {5, 6, 7, 8, 9}. To obtain a consistent result, we repeat each
setting 100 times. Additionally, we provide Figure 10 to illustrate the true distribution
of people in the 1D embedding space of the color dataset and the estimated distribution
recovered by our method.

Figure 10: Mass recovered by our method vs. population mass

Zappos: UT Zappos50K dataset [37, 38] is a really large dataset with 50,025 catalog images
from the website called Zappos.com. The entire data set contains images of shoes in different
categories, such as shoes, sandals, slippers, and boots. We manually pick five shoes from this
dataset (see Figure 11) and collect responses from 100 Amazon Mechanical Turk workers
for each possible pairwise query to obtain a ground truth of the user distribution, and then
for each pair of questions, we asked 100 people to estimate the user preference. We defer
details of the setting to Appendix B. Figure 12 shows the ground truth and the estimated
user preference distribution.

Figure 11: The 5 shoes we pick for pairwise comparison task on Amazon Mechanical Turk.

Figure 12: Preference distribution recovered by our method using the query results obtained
from AMT vs. True Preference Distribution.

12
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[17] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning and ranking by pairwise
comparison. In Preference learning, pages 65–82. Springer, 2010.

[18] Paul E. Green. Marketing applications of mds: Assessment and outlook. Journal of
Marketing, 39(1):24–31, 1975. ISSN 00222429. URL http://www.jstor.org/stable/

1250799.

[19] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735–1742, 2006. doi: 10.1109/CVPR.2006.
100.

[20] Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, and Martin Wainwright.
Approximate ranking from pairwise comparisons. In International Conference on Ar-
tificial Intelligence and Statistics, pages 1057–1066. PMLR, 2018.

[21] Daniel J Hopkins and Hans Noel. Trump and the shifting meaning of “conserva-
tive”: Using activists’ pairwise comparisons to measure politicians’ perceived ideologies.
American Political Science Review, 116(3):1133–1140, 2022.

[22] Kevin G Jamieson and Robert Nowak. Active ranking using pairwise comparisons.
Advances in neural information processing systems, 24, 2011.

[23] Richard M. Johnson. Market segmentation: A strategic management tool. Journal of
Marketing Research, 8(1):13–18, 1971. ISSN 00222437. URL http://www.jstor.org/

stable/3149720.

[24] Mahsa Lotfi and Mathukumalli Vidyasagar. Compressed sensing using binary matrices
of nearly optimal dimensions. IEEE Transactions on Signal Processing, 68:3008–3021,
2020. doi: 10.1109/TSP.2020.2990154.

[25] Andrew K Massimino and Mark A Davenport. As you like it: Localization via paired
comparisons. J. Mach. Learn. Res., 22:186–1, 2021.

[26] Shigehiro Oishi, Jungwon Hahn, Ulrich Schimmack, Phanikiran Radhakrishan, Vivian
Dzokoto, and Stephen Ahadi. The measurement of values across cultures: A pairwise
comparison approach. Journal of research in Personality, 39(2):299–305, 2005.

[27] Camille Poignard, Tiago Pereira, and Jan Philipp Pade. Spectra of laplacian ma-
trices of weighted graphs: Structural genericity properties. SIAM Journal on Ap-
plied Mathematics, 78(1):372–394, 2018. doi: 10.1137/17M1124474. URL https:

//doi.org/10.1137/17M1124474.

[28] Thomas L Saaty and Luis G Vargas. The possibility of group choice: pairwise compar-
isons and merging functions. Social Choice and Welfare, 38(3):481–496, 2012.

14



[29] Rolf Schneider. Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2 edition, 2013. doi:
10.1017/CBO9781139003858.

[30] Nihar B Shah and Martin J Wainwright. Simple, robust and optimal ranking from
pairwise comparisons. The Journal of Machine Learning Research, 18(1):7246–7283,
2017.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[32] Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Actively learning hemi-
metrics with applications to eliciting user preferences. In International Conference on
Machine Learning, pages 412–420. PMLR, 2016.

[33] Gokcan Tatli, Rob Nowak, and Ramya Korlakai Vinayak. Learning preference
distributions from distance measurements. In 2022 58th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), pages 1–8, 2022. doi:
10.1109/Allerton49937.2022.9929404.

[34] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding
how dimension reduction tools work: an empirical approach to deciphering t-sne, umap,
trimap, and pacmap for data visualization. The Journal of Machine Learning Research,
22(1):9129–9201, 2021.

[35] Fabian Wauthier, Michael Jordan, and Nebojsa Jojic. Efficient ranking from pairwise
comparisons. In International Conference on Machine Learning, pages 109–117. PMLR,
2013.

[36] Austin Xu and Mark Davenport. Simultaneous preference and metric learning from
paired comparisons. Advances in Neural Information Processing Systems, 33:454–465,
2020.

[37] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
192–199, 2014.

[38] Aron Yu and Kristen Grauman. Semantic jitter: Dense supervision for visual compar-
isons via synthetic images. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5570–5579, 2017.

Gokcan Tatli
University of Wisconsin-Madison
Madison, WI, USA
Email: gtatli@wisc.edu

Yi Chen
University of Wisconsin-Madison
Madison, WI, USA
Email: reid.chen@wisc.edu

Ramya Korlakai Vinayak
University of Wisconsin-Madison
Madison, WI, USA
Email: ramya@ece.wisc.edu

15



A Proofs

A.1 Proof of Proposition 1

We first note that we can write following

ej =

⊙∏
i∈Kj

Mi,:, j = 1, . . . , |H(Sm)|. (11)

Then, considering the structure of matrix M, we note that

2(m2 )∑
i=1

λiMi,: =

(m2 )∑
i=1

(λi − λ(m2 )+i)Mi,: +

(m2 )∑
i=1

λ(m2 )+i

1

If
∑(m2 )

i=1 (λi − λ(m2 )+i)Mi,: +

(∑(m2 )
i=1 λ(m2 )+i

)
1 = 0 holds only when λi − λ(m2 )+i = 0 for all

i = 1, . . . ,
(
m
2

)
and

∑(m2 )
i=1 λ(m2 )+i = 0, we can claim that 1 and Mi,:’s for i = 1, . . . ,

(
m
2

)
are

linearly independent. Therefore, we suppose that

2(m2 )∑
i=1

λiMi,: =

(m2 )∑
i=1

(λi − λ(m2 )+i)Mi,: +

(m2 )∑
i=1

λ(m2 )+i

1 = 0

which yields that 2(m2 )∑
i=1

λiMi,:


⊙(m2 )

= 0 (12)

Now we consider all elements in given Hadamard product and we can write following Lemma.

Lemma 2. Given a binary matrix M ∈ {0, 1}2(
m
2 )×|H(Sm)| and real coefficients λi’s, we can

write following 2(m2 )∑
i=1

λiMi,:


⊙(m2 )

=

2(m2 )∑
j=1

∑
i∈Kj

λi

(m2 )

ej ,

where Kj is the position of rows of M whose jth entry is 1.

Lemma 3. Given the binary matrix M in Section 2, for any j ≤
(
m
2

)
, we can find two

columns Mj1 and Mj2 of matrix M such that only jth and (
(
m
2

)
+j)th entry of Mj1 and Mj2

differ.

Proof: Each hyperplane has to form neighboring regions by construction. Therefore, there
has to be two columns Mj1 and Mj2 of M such that only jth and (

(
m
2

)
+j)th entry of Mj1

and Mj2 differ. To understand it better, we can consider a scenario where we delete any jth
row of matrix M and call Mj to this new matrix. Mj has to have a pair of same columns.
Otherwise, we would conclude that jth hyperplane does not form new regions, which is not
possible. We can also refer to the fact that each hyperplane has to divide at least one previous
region into two, when we consider adding one hyperplane at each time.
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Then, from Lemma 2, (12) yields that

2(m2 )∑
j=1

∑
i∈Kj

λi

(m2 )

ej = 0,

which happens only if ∑
i∈Kj

λi = 0, j = 1, . . . , |H(Sm)|.

From Lemma 3, it follows that we can find two numbers j1 and j2 for all j = 1, . . . , |H(Sm)|
such that ∑

i∈Kj1

λi =
∑

i∈Kj2

λi = 0,

where j ∈ Kj1 ,
(
m
2

)
+ j ∈ Kj2 and Kj1\{j} = Kj2\{

(
m
2

)
+ j}. Therefore, we conclude that

λj = λ(m2 )+j for all j = 1, . . . , l. Now, (12) implies that
∑(m2 )

i=1 λ(m2 )+i = 0, which proves

that rank(M) =
(
m
2

)
+ 1. For the rest of the proof, we recall that half of the rows among

2
(
m
2

)
rows of M reflect the mass on the other side of each hyperplane. Basically, adding

a row of all ones makes half of the rows redundant, since the rows representing the mass
on the other side of each hyperplane are just flipped versions of rows representing the mass
on the first side, i.e., Mi+(m2 ),:

= 1T −Mi,:. We call Mhalf to the simplified version of M.

Then, we note that rank(Mhalf) = rank(M) =
(
m
2

)
+ 1. Therefore, we cannot make further

simplifications on M to get redundant rows.

Now, we consider the simplified version Mhalf and recall that any solution p⋆
H(Sm) to the

linear system of equations in (1) has to be in the probability simplex. Therefore, all possible
q̂half vectors belong to the convex hull of columns of matrixMhalf, which we call conv(Mhalf).
Then, we apply Carathéodory’s Theorem and write following expression. Each element in
conv(Mhalf) can be written as a convex combination of at most

(
m
2

)
+ 1 columns of Mhalf.

We can easily observe that the same property also applies to conv(M) and q̂, as they share
a one-to-one correspondence with Mhalf and q̂half, respectively.

A.2 Graph Regularization

In this section, we discuss about the graph regularization that we proposed using in Section
3.2.1. We provide a standard graph regularizer without using volume weighting here to give
a better intuition about graph regularizers and why we used volume weighting in Section
3.2.1. We start by defining following weight matrix Wunif:

Wunif
i,j = ∥M:,i −M:,j∥−1

1 , (13)

which is the inverse of the Hamming distance between nodes i and j. Accordingly, we can
write following graph Laplacian regularizer:

R =
1

2

n∑
i=1

n∑
j=1

|pi − pj |2Wunif
i,j

=

n∑
i=1

pipiD
unif
i,i −

n∑
i=1

n∑
j=1

pipjW
unif
i,j = pTDunifp− pTWunifp = pTLunifp,
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where Dunif
i,i =

∑n
j=1 W

unif
i,j , Dunif

i,j = 0 when i ̸= j and Lunif = Dunif−Wunif. Now, suppose

that the spectral decomposition of Lunif can be written as Lunif =
∑l

i=1 µiviv
T
i , where vi’s

are eigenvectors and µi’s are the corresponding eigenvalues. We now further elaborate on
spectral properties of Laplacian matrices and use following Lemma.

Lemma 4. Graph Laplacian matrices are positive semi-definite by the Gershgorin circle
theorem. Furthermore, the eigenvectors of the Laplacian matrix Lunif corresponding to zero
eigenvalues are spanned by 1, which is referred to as constant vectors in [27].

Then, we can rewrite Laplacian regularizer in (3) as

pTATLunifAp = pT
l∑

i=1

µiA
Tviv

T
i Ap =

l∑
i=1

µi(p
T (ATvi))

2,

where A is a diagonal matrix with the entries Ai,i = 1
αi

and
∑

i Ai,i = 1. Laplacian

regularizer L = ATLunifA penalizes p so that potential p values correlated to vectorsATvi’s
are diminished. We can rephrase it as follows: regularizer penalizes p so that potential
A−1p values correlated to eigenvectors vi’s are diminished. Therefore, vi’s corresponding
to larger eigenvalues cause more penalty. From Lemma 4, it follows that Laplacian matrix
L corresponding to zero eigenvalues are spanned by A−11. In [27], authors also point out
that the multiplicity of the eigenvalue is equal to the number of connected components
in the graph, which is clearly 1 in our graph structure induced by M, since the regions
in H(Sm) are connected. We note that the eigenvectors of Lunif are mutually orthogonal
by spectral theory. We observe that orthogonal eigenvectors of nonzero eigenvalues would
force the candidate of the solution p to be similar to uniform distribution by punishing
possible directions other than 1. However, we note that regions in H(Sm) are not similar
to an equally spaced grid. Therefore, we use a weighted version of the regularizer in (3)
with respect to the volumes of the regions in H(Sm) instead of Lunif and punish possible
directions other than A−11, i.e. α.

A.3 Proof of Proposition 2

Recall that f(p) is the objective function 1
2 ||Mp− q̂||22 + λ

2p
TLp. If we guarantee that

∂2f

∂p2
= 2MTM+ 2λL ≻ 0, (14)

we can show that solution to the convex optimization problem in (5) is unique. Therefore,
we first focus on matrix L. From Lemma 4, null space of Lunif is spanned by 1. Since A is
a full rank matrix, null space of L = ATLunifA is spanned by A−11. All entries of A−11
are nonnegative since A−1 is a diagonal matrix with nonnegative entries. Now, we have
following

MTM ⪰ 0,

L ⪰ 0,

MTM+ λL ⪰ 0.

If ker(MTM) ̸= ker(L), we can guarantee that MTM+ λL ≻ 0. MTM is already positive
semidefinite and A−11 cannot be an eigenvector for MTM, since all nonzero entries of
MTM have same sign. Therefore, MTM+ λL is always positive definite.
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A.4 Proof of Theorem 4.1

Let psol represents the solution to the optimization setting in (6), which is a constrained
least square optimization problem with unit simplex constraint. We note that Mpsol is the
projection of q̂ onto the closed convex set CM under ℓ2 distance, which we call ProjCM

(q̂),
where

CM := conv(Me1, . . . ,Me|H(Sm)|).

Now, we can write

||p∗
H(Sm) − psol||2 = ||M†(q⋆ − ProjCM

(q̂))||2
≤ ||M†||2||q⋆ − ProjCM

(q̂)||2
(a)

≤ ||M†||2||q⋆ − q̂||2
≤ ||M†||2||q⋆ − q̂||1, (15)

where the inequality (a) is due the fact that projection onto closed convex sets is contracting
(Thm. 1.2.2.[29]). Then, we note that 2 TV(p⋆

H(Sm),psol) = ||p∗
H(Sm) − psol||1, and use

l1 − l2 norm inequality to obtain the following from (15),

||p∗
H(Sm) − psol||1 ≤

√
|H(Sm)|||p∗

H(Sm) − psol||2
≤

√
|H(Sm)|||M†||2||q̂− q⋆||2

≤

√
2|H(Sm)|

(
m

2

)
||M†||1||q̂− q⋆||1

=

√
2|H(Sm)|

(
m

2

)
cond(M, 1)

||M||1
||q̂− q⋆||1.

Note that the term ||q̂−q⋆||1 is the sum of l1- distances between the empirical and the true
conditional distributions of pairwise comparisons for items in the query set S. We then note
that ||M||1 =

(
m
2

)
and use the bound on the l1-norm between empirical distribution and the

true distribution for discrete distributions on finite support from Lemma 1 to complete the
proof.

A.5 Proof of Theorem 4.2

Multiplication of each element in unit simplex with matrix R defines following closed convex
set,

CR := conv(Re1,Re2 . . . ,Re|H(Sm)|).

Then, the unique solution psol to the optimization setting in (8) can be expressed as

psol = R−1ProjCR
(b), (16)

where b = R−TMTMp∗. Therefore,

Rpsol = ProjCR
(R−TMTMp∗

H(Sm)). (17)
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We can write

∥psol − p∗
H(Sm)∥2 ≤ ∥R−1∥2∥Rpsol −Rp∗

H(Sm)∥2
= ∥R−1∥2∥Rp∗

H(Sm) − ProjCR
(R−TMTMp∗

H(Sm))∥2 (18)

≤ ∥R−1∥2∥Rp∗
H(Sm) −R−TMTMp∗

H(Sm)∥2 (19)

= ∥R−1∥2∥Rp∗
H(Sm) −R−T (RTR− λL)p∗

H(Sm)∥2
≤ ∥R−1∥2∥λR−TLp∗

H(Sm)∥2
≤ λ∥R−1∥22∥L∥2, (20)

where (18) is from (17), (19) is due to contracting property of projection onto closed convex
sets and (20) holds since ∥A∥2 ≤ 1 by construction. Then, we use l1 − l2 norm inequality
and (20) to obtain following

TV(p⋆
H(Sm),psol) =

1

2
||p∗

H(Sm) − psol||1 ≤
√
|H(Sm)|

2
||p∗

H(Sm) − psol||2

≤ λ

2

√
|H(Sm)|∥R−1∥22∥L∥2.

A.6 Proof of Theorem 4.3

Following similar lines with the proof of Theorem 4.2, we can write

Rpsol = ProjCR
(R−TMT q̂).

We, again, start with bounding ℓ2 norm error and write

∥psol − p∗
H(Sm)∥2 ≤ ∥R−1∥2∥Rpsol −Rp∗

H(Sm)∥2
= ∥R−1∥2∥Rp∗

H(Sm) − ProjCR
(R−TMT q̂)∥2

≤ ∥R−1∥2∥Rp∗
H(Sm) −R−TMT q̂∥2

≤ ∥R−1∥2(∥Rp∗
H(Sm) −R−TMTMp∗

H(Sm) (21)

+ R−TMTMp∗
H(Sm) −R−TMT q̂∥2)

≤ ∥R−1∥2(∥Rp∗
H(Sm) −R−TMTMp∗

H(Sm)∥2 (22)

+ ∥R−TMTMp∗
H(Sm) −R−TMT q̂∥2)

≤ ∥R−1∥22(λ∥L∥2 + ∥MT ∥2∥q⋆ − q̂∥2), (23)

where (23) is from the fact that MpH(Sm) = q⋆ and (20). Then, we can simply write
following inequalities

TV(p⋆
H(Sm),psol) =

1

2
||p∗

H(Sm) − psol||1

≤
√
|H(Sm)|

2
||p∗

H(Sm) − psol||2

≤
√
|H(Sm)|

2
∥R−1∥22(λ∥L∥2 + ∥MT ∥2∥q⋆ − q̂∥2)∥L∥2

≤ λ

2

√
|H(Sm)|∥R−1∥22∥L∥2 +

√
|H(Sm)|

2
∥R−1∥22∥MT ∥2∥q⋆ − q̂∥2

≤ λ

2

√
|H(Sm)|∥R−1∥22∥L∥2 +

√
|H(Sm)|r

2
∥R−1∥22∥MT ∥2∥q⋆ − q̂∥1.

Lastly, we apply Lemma 1 and complete the proof.
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A.7 Proof of Proposition 3

We refer to the fact that each column of matrix M gives us position of restricted regions
in terms of binary coordinates with respect to hyperplanes. By construction, corresponding
entries of q⋆, which we denote as q⋆

Kj
, have p⋆

H(Sm)j
as a nonnegative summand. Therefore,

we can deduce following

p⋆
H(Sm)j

≤ min
i∈Kj

q⋆
aibi , j = 1, . . . , |H(Sm)|. (24)

Using this fact and nonnegativity of entries of matrix M, we can write following set of
inequalities

M



mini∈K1
q⋆
aibi

...
mini∈Kj−1

q⋆
aibi

p⋆
H(Sm)j

mini∈Kj+1 q
⋆
aibi

...
mini∈Kl

q⋆
aibi


︸ ︷︷ ︸

Qj

≥ q⋆, j = 1, . . . , |H(Sm)| (25)

which enables us to lower bound each entry p⋆
H(Sm)j

for j = 1, . . . , |H(Sm)|. Here, Qj

represents the vector constructed with minimum qaibi ’s over different sets and p⋆
H(Sm)j

.

We let Qj
0 represent the vector that jth entry of Qj is replaced with 0 and note that each

inequality in (25) can be rewritten as follows

MT
k,:Q

j ≥ q⋆
akbk

, k = 1, . . . , 2

(
m

2

)
,

where the vector Mk,: represents kth row of M. Equivalently, using standard basis vectors,
we can write

p⋆
H(Sm)j

MT
k,:ej ≥ q⋆

akbk
−MT

k,:Q
j
0, k = 1, . . . , 2

(
m

2

)
,

which provides us following bound

p⋆
H(Sm)j

≥ max{max
i∈Kj

q⋆
aibi −MT

i,:Q
j
0, 0}, j = 1, . . . , |H(Sm)|. (26)

Combining (24) and (26), we obtain following expression

max
i∈Kj

q⋆
aibi −MT

i,:Q
j
0 ≤ p⋆

H(Sm)j
≤ min

i∈Kj

q⋆
aibi . (27)

A.8 Proof of Proposition 4

For any q⋆
aibi

, we can say that

|q̂aibi − q⋆
aibi | ≤

√
log (2/δ′)

2ni
(28)
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holds with probability at least 1−δ′ by Hoeffding’s Inequality. Therefore, we want to bound
the probability that

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni

holds at least for one i. Therefore, we want to bound

Pr

⋃
i

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni


≤

∑
i

Pr

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni


(29)

≤2

(
m

2

)
δ′, (30)

where (29) is from union bound and (30) is due to (28). Picking δ = 2
(
m
2

)
δ′, we conclude

that

|q̂aibi − q⋆
aibi | ≤

√
log (4

(
m
2

)
/δ)

2ni
, ∀i,

holds with probability at least 1− δ. Inserting it to the result in Proposition 3, we complete
the proof.

B Additional Experimental Details

B.1 Zappos dataset

In order to obtain the embedding of the shoes, we modify VGG11 [31] so that the output
is a 21-dimensional vector, which is the number of classes in the UT Zappos 50K dataset.
After reaching 97% training accuracy, we extract the representation in the penultimate layer
of the network, which is 512 dimensional, and use PaCMAP [34] with default parameters
to obtain the 2D embedding of the 5 shoes, shown in Figure 13.

Then, we create tasks with the interface shown in Figure 14 on Amazon Mechanical Turk
[3] where each worker is asked to answer 15 preference questions. 10 of which are the 10
pairs formed by 5 shoes in Figure 11 and the rest are repeated queries used to measure the
consistency of workers. We first asked 100 different workers to complete this task so that
we can have answers to all 10 pairwise queries and find regions where workers are located.
Therefore, we can form an estimate of p⋆

H(Sm). In case of an inconsistency, where a worker
may fall into not a unique region, but multiple regions, these regions share the probability
equally, i.e. if a worker falls into p regions, then each region has a probability of 1

p .

Then, we gather answers from 1000 unique workers so that each pair of shoes is answered
by 10 folds of 100 different people. We use our methods to recover the p̂H(Sm) 10 times,
each time with one of the ten folds of 100 different people. Figure 12 shows our recovered
p̂H(Sm) compares to p⋆

H(Sm). Figure 15 shows regions and 2D embedding of the dataset.
Each color represents one of the 21 types of shoes in the dataset. Each region is labeled
with 4 numbers, which correspond to regions ID, median, minimum, and maximum of the
probabilities in that region respectively.
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Figure 13: 2D embedding of the 5 shoes obtained using penultimate layer of modified VGG11
and PaCMAP. Each color represents a type of shoes. 5 shoes we used for experiments are
also located.
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Figure 14: AMT Task interface
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Figure 15: 2D embedding of shoes with restricted regions by hyperplanes
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