
Learning Populations of Preferences via Pairwise
Comparison Queries

Gokcan Tatli†, Yi Chen†, Ramya Korlakai Vinayak†

†University of Wisconsin-Madison
{gtatli, reid.chen}@wisc.edu, ramya@ece.wisc.edu

Abstract

Ideal point based preference learning using pairwise comparisons of type "Do you
prefer a or b?" has emerged as a powerful tool for understanding how we make preferences.
Existing preference learning approaches assume homogeneity and focus on learning prefer-
ence on average over the population or require a large number of queries per individual to
localize individual preferences. However, in practical scenarios with heterogeneous prefer-
ences and limited availability of responses, these approaches are impractical. Therefore,
we introduce the problem of learning the distribution of preferences over a population via
pairwise comparisons using only one response per individual. Due to binary answers from
comparison queries, we focus on learning the mass of the underlying distribution in the
regions created by the intersection of bisecting hyperplanes between queried item pairs.
We investigate this fundamental question in both 1-D and higher dimensional settings with
noiseless response to comparison queries. We show that the problem is identifiable in 1-D
setting and provide recovery guarantees. We show that the problem is not identifiable for
higher dimensional settings in general and establish sufficient condition for identifiability.
We propose using a regularized recovery and provide guarantees on the total variation
distance between the true mass and the learned distribution. We validate our findings
through simulations and experiments on real datasets. We also introduce a new dataset
for this task collected on a real crowdsourcing platform.

1 Introduction

Learning user preferences via pairwise comparison queries of the type “Do you prefer item a
or b?” (Figure 1(a)) is widely used in various applications, such as political science, to model
voters’ political preferences and predict their voting behavior, and in recommendation systems,
to model users’ preferences for products or services [SV12, Fic86, AAFF+06, HN22, OHS+05].
Let x ∈ X ⊆ Rd be the known feature representation of concepts (items, objects, images,
choices, etc.). Preference learning based on ideal point model [Coo50, JN11, Din16, STK16,
XD20, CMKVN22] assumes that there is an unknown ideal preference point u ∈ X that
represents the reference point people use for their preference judgments based on distances.
When presented a preference query, “Do you prefer a or b?”, the ideal point model [Coo50]
assumes that a is preferred over b if the individual’s preference point u is closer to the
representation of item a, xa than item b, xb (Figure 1(b)), i.e., ||xa − u||2 < ||xb − u||2.
Preference learning aims to use the responses to pairwise comparison queries from people and
learn the preference point u. Once we learn u, we can predict people’s choices between new
unseen pairs.

Many works on preference learning have focused on a universal model, where the data from

1

Figure 1: (a) Example of pairwise comparison query. (b) Ideal point model based response to a
comparison query. The colorless circles denote the known representation for items being compared
and the human denotes the unknown user preference point. (c) Example of the regions formed by the
bisecting hyperplanes between pairs queried and mass of user preferences in different regions.

everyone is pooled together to learn a single preference point on average for the popula-
tion [Gre75, Joh71, BGN16]. However, different individuals can have different preferences.
While one can focus on learning an individual’s preference separately, it takes O(d log(d/ε))
queries in Rd to learn an individual’s preference point within an ε-ball [MD21]. This can be a
prohibitively large number of queries per individual due to cost, cognitive overload or privacy
concerns. Therefore, we introduce the problem of learning the distribution of preferences
over a population via pairwise comparisons using only one response per individual. In this
scenario, learning each individual’s preference is impossible. In many applications, learning
the distribution of user preferences (Figure 1(c)) can be useful for many downstream tasks.
E.g., if an ice cream company wants to come up with new flavors, knowing which regions of
flavor profiles have more mass is beneficial in discovering new ice cream flavors. The learned
distribution can thus be helpful in various tasks ranging from understanding the polarization
of preferences within a population and testing differences between preferences of different
populations to using the distribution as a prior to efficiently learn new user preferences.

We investigate the problem of learning the distribution of user preferences using pairwise
comparisons. Since we are limited to binary answers to comparison queries for pairs of items,
we focus on learning the mass of the underlying distribution in the regions (polytopes) defined
by the intersection of the bisecting hyperplanes pairs of items (see Figure 1(c)). If we could
have queried Õ(d) per user, we can localize each user preference point to one of the regions. So,
if we sample a large number of individuals from the population and query each of them with a
sufficiently large number of queries, we can build a histogram of the underlying distribution in
these regions. However, querying a large number of comparison pairs per individual can be
prohibitive due to privacy issues, limited interaction of individuals with the platform, cognitive
overload, and cost.

Goal: Develop a fundamental understanding of what we can learn about the distribution
of user preferences with only one comparison query per user.

Our contribution: We study the novel problem of learning the distribution of user preferences
over the population via pairwise comparison queries with only one response per individual in
the ideal point model. We investigate the fundamental questions of identifiability and recovery
guarantees leading to the following contributions:

• We show that the problem is identifiable in 1D setting and is not identifiable in a higher
dimensional setting in general. We provide sufficient condition under which the problem is

2

identifiable in higher dimensions.
• For the 1D setting, we provide recovery guarantees for the mass in the regions defined by

the intersection of hyperplanes at the mid-point of queried pairs.
• For the higher dimensional setting, we propose to use regularized recovery and provide

guarantees on the total variation distance between the true mass in each region and the
estimated mass in terms of the regularization parameter and the interplay between the true
mass and regularization.

• We provide experiments on synthetic and real datasets that validate our results and obser-
vations. We also introduce a new dataset for this task collected on a real crowdsourcing
platform 1.

In addition to the above contributions, our work leads to several interesting open questions
regarding learning from diverse populations in preference learning.

2 Problem Setup

Let x ∈ X ⊆ Rd denote known feature representation of items2. Under the ideal point
model [Coo50], each individual’s preference is also modeled as an unknown point in the same
space. Let P ⋆ denote the unknown underlying distribution of user preferences. Each individual
l has an unknown preference ul ∈ Rd. We assume that ul

i.i.d.∼ P ⋆. Let T denote the set of
pairs of items (i, j) that are queried. We consider pairwise comparison queries of the form
“do you prefer item i or item j?". We assume that the answer to the pairwise query (i, j)

from an individual l is y
(l)
ij = 1 if ||xi − ul||2 < ||xj − ul||2 and y

(l)
ij = −1 otherwise. Note

that each pair of items (i, j) with i < j in T is associated with a hyperplane, denoted by hij ,
that is perpendicular at the midpoint joining the two items xi and xj . We will slightly abuse
the notation and use T to denote the set of hyperplanes as well as the pairs of items. Note
that there is a one-to-one correspondence between each pair and the respective hyperplane.
The intersection of these hyperplanes carve out regions in Rd that are polytopes. Let H(T)
denote the set of partitions of Rd that is created by the set of all hyperplanes in T . Note that
for |T | hyperplanes in Rd, |H(T)| = O(|T |d) [Buc43]. Given answers to pairwise comparison
queries, our goal is to understand what we can learn about the underlying distribution of user
preferences P ⋆. Given a finite number of hyperplanes and only binary answers to pairwise
comparison queries, we focus on the fundamental question of whether we can learn the mass
induced by P ⋆ on the regions H(T), denoted by p⋆

H(T) which is a discrete probability mass
function of size |H(T)|.

For each pair of items (i, j) ∈ T , let q⋆ij denote the mass of P ⋆ on the side of xi of the
hyperplane hij and q⋆ji = 1− q⋆ij is the mass on the other side of hij . Let q⋆ ∈ R2|T | denote
the vector that stacks qij ’s for the ordered pairs (i, j) ∈ T , followed by the corresponding qji’s.
We note q⋆ denotes the fraction of people on either side of the hyperplanes in T and can
be written as a linear combination of the mass p⋆

H(T) in the regions via the following linear
system of equations,

H p⋆
H(T) = q⋆, (1)

where H is a 2|T | × |H(T)| binary matrix where in each row, the 1’s indicate the regions that
contribute to the side of the hyperplane. Each column of H corresponds to a region (polytope)
created by the intersection of the hyperplanes. Note that p⋆

H(T) identifiable if it is the unique

1Codes for our methods and synthetic datasets are available in the supplementary material. We will make
the anonymized crowdsourced dataset available to the public upon publication.

2This is a reasonable assumption, especially with the availability of large pre-trained foundation models.

3

Figure 2: (a) Example of regions (polytopes) formed by the intersection of three hyperplanes. (b)
The corresponding matrix H. (c) The corresponding graph where the regions are the nodes.

probability vector of size |H(T)| that gives rise to q⋆. So, p⋆
H(T) is not identifiable if there

exist a valid probability vector p ̸= p⋆
H(T) such that Hp = Hp⋆

H(T).

Figure 2 shows an example of partition of R2 with 3 hyperplanes h1,2, h3,4 and h5,6. With
the enumeration of the regions shown in the figure, we can construct the binary matrix H,
where the first 3 rows represent regions corresponding to h1,2 towards the side of item 1, h3,4
towards the side of item 3 and h5,6 towards the side of item 5 respectively. Similarly, the last
3 rows represent regions corresponding to the other side of each of the hyperplanes. We also
note that each column gives positions of the corresponding region pi in terms of hyperplanes
h1,2, h3,4 and h5,6.

For each pair (i, j) ∈ T , we can estimate the mass on either side of the hyperplane hij by
querying the pair to a random sample of people. Given these estimated masses on either side
of the hyperplanes in T , the question of interest is: Can we estimate p⋆

H(T), the probability
mass in the regions of intersections of hyperplanes in T induced by the underlying distribution
of preferences P ⋆?

3 Related Works

Preference learning based on ideal point model [Coo50, JN11, Din16, STK16, XD20, MD21,
CMKVN22] has been studied by several works. Learning a user preference point up to ε-
error with pairwise comparisons requires O(d/ log(d/ε)) queries under mild assumptions of
coverage of query items on the space of preferences [MD21]. A recent work [XD20] considered
the problem of simultaneously learning an unknown metric and a user preference point and
proposed an alternating minimization algorithm. A key limitation of these works is that they
either focus on learning an individual preference by making many queries per individual or
assume homogeneity and learn a single preference point using data from all the users. Another
recent work [CMKVN22] considers a setting with multiple users with different preference
points, but the focus there is to learn each individual preference point while also learning an
unknown metric that is common across the users and the pairwise queries per individual scales
as Õ(d) which is needed to learn the individual preferences (where Õ(.) hides log factors).
However, querying multiple pairs per user is an hurdle in various situations, e.g. privacy
concerns due to tracking a user over time, cognitive overload, and cost in obtaining answers to
multiple queries, especially in larger dimensional spaces. When we have only one query per
users these methods are not applicable unless all users are homogeneous in which case one can
pool in all the data to learn a single preference point.

A recent work [TNV22] considers a distance query model, i.e. when a user is queried with an

4

item, the response is how far their preference point is from the queried item, and studies the
problem of learning the distribution of preferences for the specific case of discrete 1D discrete
distributions. Under this setting, they provide sufficient condition in terms of number of items
in the query set and their locations on the 1D grid that makes the problem identifiable – just
one item in the query set is sufficient if it is at the edge and two items in the query set are
sufficient otherwise to identify the mass of preferences on all the locations on the 1D grid.
They also use a linear system formulation to represent their setting and provide guarantees
on recovering the discrete preference distribution on the 1D grid by solving constrained least
square optimization. In contrast, we consider the more realistic setting of response to pairwise
comparison between items and we study both 1D and higher dimensional settings and not
restricted to discrete distributions for user preferences. Instead, we focus on learning p∗

H(T),
i.e., the mass of user preferences induced in the regions created by the intersection of the
hyperplanes that correspond to pairwise comparisons. The differences in the query model and
the geometry lead to different insights in terms of the nature of identifiability issues as well as
the properties of the linear systems that arise with pairwise comparisons. For example, for the
1D case in our setting, depending on the number of pairs being compared, we get different
number of intervals. If we have just two items in the query set, we only have one pairwise
comparison, leading to two intervals and we could only hope to learn mass on either side of the
midpoint between the two items. Instead, if we have 3 items, we can have 3 possible pairwise
comparisons and 4 intervals and we can learn the mass in these 4 intervals and so on. So,
with more pairs leading to more intervals, we can learn more refined information about the
underlying continuous distribution of preferences. In higher dimensional case, we show that
the problem of learning p⋆

H(T) is not identifiable in our setting (Proposition 2). We further
show that if the true solution p⋆

H(T) is sparse and satisfies certain geometric property, then
the problem is identifiable (Theorem 5.1).

Another line of work in preference learning involves ranking based models, e.g., Bradley-Terry-
Luce model [BT52, Luc59], Mallows model [Mal57], stochastic transitivity models [SBGW16],
that focus on finding a single ranking of m items or finding top-k items by pairwise com-
parisons [Hun04, KMS07, BM07, NOS12, Eri13, RA14, SW17]. Ranking m items in these
settings requires O(m logm) queries. Note in contrast, under the ideal point based models, the
query complexity for ranking reduces to O(d logm), where d is the dimension of the domain of
representations which is usually much smaller than the number of items being ranked [JN11].
This is due to the fact that the geometry induces constraint on the number of possible rankings
from m! to O(md). Lu and Boutilier [LB14] consider a mixture of K-Mallows model for the
ranking setting and proposes an EM algorithm that takes user preferences as input and outputs
the estimated model parameters. However, there are no guarantees provided for this algorithm.
Other works on ranking models [ABSV14, MW22] have noted that even a two component
mixture of Mallows model is not identifiable with pairwise comparisons and the focus has
been on settings that consider samples that are full or list-wise or group-wise ranking data per
user and tensor-based algorithms for recovery. A recent work [ZZLL22] considers a mixture of
two BTL-models with pairwise comparison and shows that it is identifiable except for certain
sets of parameters and show similar results for list-wise query setting, but it does not provide
algorithmic approaches to estimate them. Our work focuses on preference learning based on
ideal point model with pairwise comparison queries and develops fundamental understanding
under a nonparametric setting.

5

4 One Dimensional Setting

We first study the problem in the 1D setting and provide results on identifiability and recovery
guarantees.

Identifiability: In 1D setting, |T | pairs creates |T |+ 1 intervals. Measuring the fraction of
mass on either side of each of the hyperplanes in T is equivalent to measuring the cumulative
distribution function (CDF) of the distribution p⋆

H(T). The linear system of equations (1) has
|T |+ 1 unknowns and |T |+ 1 equations. The corresponding binary matrix H can be written
as a concatenation of two triangular matrices where one is a lower triangular and the other
is an upper triangular matrix. E.g., 2 pairs create 3 regions, and the corresponding matrix
H = [1, 0, 0; 1, 1, 0; 0, 1, 1; 0, 0, 1]. Any such H is full column rank by construction.
Therefore, the linear system of equations q⋆ = H p has a unique solution in terms of the true
q⋆, given by p⋆

H(T) = (HTH)−1HTq⋆. This is summarized in the following proposition.

Proposition 1. (Identifiability in 1D) In 1D setting, the mass p⋆
H(T) in the regions of the

intersection of hyperplanes in T induced by the underlying distribution of preferences can be
uniquely determined by only measuring the fraction of the population on either side of each of
the hyperplanes in T .

Recovery Guarantees: As we do not have access to true q⋆, we have to learn p⋆
H(T) from q̂

estimated by querying pairs in T . We use the following constrained optimization problem:

p̂H(T) := arg minp≥0,1⊤p=1

1

2
||Hp− q̂||22.

The objective function is strongly convex and therefore the above optimization problem is
guaranteed to have a unique solution. We provide the following recovery guarantee for the 1D
noiseless setting for the above optimization.

Theorem 4.1. (Recovery in 1D) With probability at least 1−δ, the total variation distance
between p⋆

H(T) and the recovered mass p̂H(T) is bounded as follows,

TV
(
p⋆
H(T), p̂H(T)

)
≤
√
|T |+ 1

2

√
log(4|T |/δ)

2np
,

where np is the number of users queried per pairwise comparison query.

As the number of users increases, the total variation distance between p⋆
H(T) and p̂H(T) goes

to 0. Proof details are available in the appendix.

5 Higher Dimensional Settings

In this section, we discuss the identifiability results and recovery guarantees for Rd, with d ≥ 2.
The details of the proofs are deferred to the appendix.

Identifiability: Assuming items and users are supported on Rd, with d ≥ 2, we note that
the number of regions, |H(T)|, formed by the hyperplanes in T is of O(|T |d). So, the linear
system of equations (1) has more unknowns than the number of equations. We show the
following with regard to identifiability.

Proposition 2. For d ≥ 2, the binary matrix H which of size 2|T | × O(|T |d) has rank(H) =
|T |+ 1 and the solution to the linear system of equations (1) is not unique and hence p⋆

H(T)
is not identifiable.

6

Sparsity: From Proposition 2, for d ≥ 2, we cannot hope to recover p⋆
H(T) in general. However,

H is a fat matrix, and a natural question that arises is what if p⋆
H(T) is sparse, i.e., if only

k ≪ O(|T |d) entries of p⋆
H(T) are non-zero? We note that, since rank(H) = |T |+ 1, for any

k > |T |+1, there exists at least another solution to the equation (1). This follows from noting
that the distribution of preferences on either side of each of the hyperplanes can, in fact, be
re-written as a convex combination of a set of vectors in R2|T | corresponding to the columns
of H, and then using the Carathéodory theorem which guarantees that there always exists a
solution which can be expressed with at most |T |+ 1 columns (see appendix for a detailed
discussion of this). We further note that the results from sparse signal recovery literature
[CW08, Bar07, Ela10], in particular, from Theorem 2.13 by Foucart and Rauhut [FR13], any
k-sparse solution of an underdetermined linear system of equations is unique if and only if
every set of 2k columns of measurement matrix is linearly independent. Given the structure of
our matrix H in equation (1), we show the following.

Proposition 3. For the problem setting in (1), we can always find linearly dependent ℓ
columns of H if ℓ ≥ 4.

Proof of Proposition 3: Given any two neighboring regions in the partition H(T), we
suppose that H:,i1 and H:,i2 are corresponding columns to those regions, where only j-th
hyperplane differ in between. We observe that it is possible to find another pair of columns,
satisfying the same condition, separated solely by the j-th hyperplane as long as there exists
another hyperplane that intersects with j-th hyperplane. Therefore, we can find linearly
dependent 4 columns except the trivial case when all hyperplanes are parallel to each other.
The problem setting boils down to the 1D setting, when all hyperplanes are parallel. The
binary measurement matrix H becomes full rank and we can uniquely recover underlying
distribution of regions in the partition H(T) separated by parallel hyperplanes.

As a consequence, even with a lot of sparsity, uniqueness cannot be guaranteed for all k-sparse
distributions for k ≥ 2. For example, consider the partition in the Figure 2(a). Then, suppose
that the solution is 2-sparse and q⋆ = [0.5, 1, 0.5, 0.5, 0, 0.5]⊤. We note that q = Hp
holds for both p = [0.5, 0, 0.5, 0, 0, 0, 0]⊤ and p = [0, 0.5, 0, 0, 0, 0, 0.5]⊤. Similarly,
we suppose that the solution is 4-sparse and p⋆ = [0.3, 0, 0, 0, 0.4, 0.1, 0.2]⊤. Therefore,
we have Hp⋆ = q, where q = [0.4, 0.5, 0, 0.6, 0.5, 1]⊤. However, q = Hp holds also for
p = [0.2, 0, 0, 0, 0.3, 0.2, 0.3]⊤. In accordance with the above result, we provide following
remark based on the fact that M is a column-regular matrix, i.e. each column of M has
exactly the same number of 1’s.

Remark 1. Robust Null Space Property (RNSP) has been proposed as a sufficient condition
for basis pursuit approach (a popular recovery algorithm in compressed sensing literature)
[FR13, Fou14]. Recently, Lotfi and Vidyasagar [LV20] proposed sufficient conditions for a
column-regular binary matrix to achieve RNSP, which are the best sufficient conditions for
column-regular binary matrices to the best of our knowledge. According to Theorem 9 by Lotfi
and Vidyasagar [LV20], a column-regular binary matrix satisfies RNSP when k< dL/ρ, where
dL is the number of 1’s in each column and ρ is the maximum inner product among columns.
Our binary matrix M is column-regular binary matrix with |T | 1’s in each column. Since
there are neighboring regions, i.e., regions that has only one different coordinate, maximum
inner product among columns is |T | − 1. Therefore, RNSP is achieved when k = 1.

Remark 1 shows that current results from compressed sensing literature for binary matrices can
only guarantee unique solution for trivial case where the solution is assumed to be 1-sparse.

7

While not all k-sparse solutions are unique for k ≥ 2, we characterize a sufficient condition
under which we can guarantee uniqueness for k-sparse solutions. First, we recall following
definitions from convex geometry.

Affinely Independent Set: A set of vectors {v1,v2 . . .vn} is said to be affinely independent
if {v2 − v1,v3 − v1, . . .vn − v1} are linearly independent.

Simplex: Convex hull of affinely independent set of vectors is called simplex.

Face of a Convex Polytope: A face of a convex polytope is defined as the intersection of
the convex set with its supporting hyperplanes. Each face is also a polytope and contains a
subset of vertices of the convex polytope.

Simplicial face: If the set of vertices contained in a face of a convex set are affinely
independent, this face is called a simplicial face.

Convex Polytope: There are 2 equivalent ways of describing a convex polytope P by the
Farkas–Minkowski–Weyl Theorem. We can define P as the convex hull of a finite set of vertices,
i.e., P = conv(v1,v2 . . .vn), which is known as V-representation of polytope P. We can also
define P as the intersection of a finite set of half spaces, i.e.,

P = {x ∈ Rd|⟨ai,x⟩ ≤ bi, i = 1, . . . , f},
which is also called H-representation of polytope P. Here, f is the number of facets, i.e.,
d − 1 dimensional faces and ai’s are corresponding face normals. Each ⟨ai,x⟩ ≤ bi defines
a supporting hyperplane with the boundary condition ⟨ai,x⟩ = bi. Recall that faces of the
polytope P are defined as the intersections of supporting hyperplanes with P . For any point x
belong to a face of convex polytope P, at least one of the f inequalities has to satisfy as an
equality.

Noting that p is a probability vector, from the equation 1, we see that q⋆ is a convex
combination of the columns of H. Therefore, the set of all possible vectors q⋆ is a convex
polytope. We show the following sufficient condition for identifiability when k ≤ |T |+ 1.

Theorem 5.1. (Restricted identifiability under sparsity) If q⋆ belongs to the relative interior
of a simplicial face of conv(H), the system of linear equations q⋆ = Hp has a unique solution
p⋆, where conv(H) refers to the convex hull of columns of H.

Proof of Theorem 5.1: We suppose that q⋆ belongs to interior of a simplicial face FS of
the polytope conv(H). Then the uniquness of the solution p⋆ follows from Proposition 4.6 in
[KT21], which is stated below.

Proposition 4. (Proposition 4.6 in [KT21]): Given a compact convex set K and a point
x ∈ K, x has a unique proper convex combination of extreme points of K with participating
extreme points if and only if x belongs to a relative interior of a simplicial face of K, where
proper convex combination refers to the convex combination with nonzero convex coefficients.

For K = conv(H), we can conclude that q⋆ can be written as a unique convex combination of
a subset of extreme points of conv(H), i.e., there exists a unique probability vector p⋆ such
that Hp⋆ = q⋆.

In Rd, we can have at most d + 1 affinely independent set of points. Therefore, the above
theorem only applies to k ≤ |T |+ 1. To illustrate the implication of Theorem 5.1, we consider
the example from the partition in Figure 2(a) with 2-sparse cases. As we observed before,

8

p⋆ = [0.5, 0, 0.5, 0, 0, 0, 0]⊤ is not a unique solution for q⋆ = [0.5, 1, 0.5, 0.5, 0, 0.5]⊤.
Here, we note that conv(H:,1,H:,3) does not form a simplicial face of conv(H), where H:,j

denotes j-th column of H. On the other hand, any q⋆ that is formed by a convex combination
of H:,1 and H:,6 will have the unique solution p⋆ = [q⋆

2, 0, ..., 0, 1−q⋆
2]
⊤, since conv(H:,1,H:,6)

is a simplicial face of conv(H).

We consider another example from the partition in the Figure 2(a) with 3-sparse cases.
First, we suppose that q = [0.1, 0.7, 0.2, 0.9, 0.3, 0.8]. q = Hp holds for both p =
[0.7, 0, 0.2, 0, 0, 0, 0.1] and p = [0.5, 0.2, 0, 0, 0, 0, 0.3]. Here, we note that
conv(H:,1,H:,3,H:,7) and conv(H:,1,H:,2,H:,7) are not even faces of conv(H). They both
belong to the face intersecting with the hyperplane defined as [e3, e6]

Tp = [1, 0]T . On the
other hand, we can easily observe that conv(H:,1,H:,2,H:,6) is a simplicial face of conv(H),
since they are affinely independent and conv(H:,1,H:,2,H:,6) is a face of conv(H) formed by
the intersection of the boundary of half space corresponding to [e1, e4]

Tx ≤ [1, 0]T . Then,
any q that is formed by a convex combination of H:,1,H:,2 and H:,6 will have a unique solution
p⋆ = [q2 = q3, q3, 0, 0, 0, 1 − q2, 0]T , which confirms that conv(H:,1,H:,2,H:,6) is a
simplicial face of conv(H).

Bounds on the mass in the regions: Given the restricted identifiability of p⋆
H(T) in higher

dimensions, we cannot always hope to recover it from binary answers to pairwise comparison
queries. Here, we show that we can obtain lower and upper bounds for each entry of p⋆

H(T)
from the estimated q̂ without requiring any additional assumptions. To state these bounds, we
need some notations. Let Hi,: be the i-th row of H (corresponding to the i-th hyperplane) and
let (ai, bi) denote the pair queried corresponding to this row. Let q̂ai,bi denote the estimated
mass on the side of ai of the i-th hyperplane. Let Kj denote the position of rows of H whose
j-th column entry is 1 and Q̂j

0 := [mini∈K1 q̂aibi , . . .mini∈Kj−1 q̂aibi , 0, mini∈Kj+1 q̂aibi ,
. . .mini∈K|H(T)| q̂aibi]

T .

Proposition 5. With probability at least 1− δ, each entry of pH(T) can be bounded below
and above as follows:

max {0, Lj} ≤ p⋆
H(T)j

≤ Uj , (2)

where Lj := maxi∈Kj q̂aibi −HT
i,:Q̂

j
0 − (|Hi,:|1 + 1)γ, Uj := mini∈Kj q̂aibi + γ, γ =

√
log (4|T |/δ)

2np

and np is the number of people answering each pairwise query.

Proposition 5 provides most general tight bounds when there is no side information about
the setting. See the appendix for details of the proof. Below, we provide a simple example
with two hyperplanes to highlight the tightness of the bounds on mass in each region given in
Proposition 5.

Figure 3: Example for bounds on mass in each region in 2D with 2 hyperplanes with two solutions
that give rise to same true q⋆ highlighting the tightness of the bounds on mass in each region provided
in Proposition 5.

9

For the given value of q⋆ in Figure 3, Proposition 5 provides following bounds

max

{
0,max

i∈Kj

q⋆
aibi
−HT

i,:Q
⋆
0
j

}
≤ p⋆

H(T)j
≤ min

i∈Kj

q⋆
aibi

. (3)

Recall that Kj represents the set of all rows of H where the j-th column entry is 1. For
this example, K1 = {2, 3}, K2 = {1, 2}, K3 = {1, 4} and K4 = {3, 4}. Applying the upper
and lower bounds provided in the above equation, we obtain the bounds shown Figure 3(iv).
Furthermore, we note the p(a) and p(b) in Figure 3(v), are both solutions to the set of linear
equation q⋆ = Hp in this example and these two reach the bounds obtained in Figure 3(iv)
illustrating the general tightnes of these bounds.

Graph Regularization: In the face of non-identifiability, additional structural assumptions
are needed for learning p⋆

H(T). While p⋆
H(T) is a O(|T |d)-dimensional probability vector,

the entries corresponding to mass in regions have a geometry in the space X ⊆ Rd (recall
Figure 2(a)) that gives a notion of near-by and far-away regions. We construct a connected
undirected graph with the polytopes as the nodes and two nodes are connected by an edge if
they share a (d − 1)-dimensional face between them (see Figure 2(c)). We propose using a
graph regularizer (normalized by volume to account for differences in the sizes of the regions)
to recover p⋆

H(T). Intuitively, this means that we expect preferences to accumulate in spatially
nearby regions (Figure 1(c)). Several works in signal recovery have used graph regularization to
exploit local invariance in data as side information and find a locally invariant representation
of the data [BN01, CHHH11, HCL06].

We note that this proposed graph structure can be constructed using the matrix H. Recall that
the rows of H correspond to hyperplanes and the columns correspond to the regions (polytopes)
in H(T), providing a binary encoding for them by construction. That is, each entry of a given
column of H determines which side of a hyperplane the corresponding region is located on.
Therefore, there exists an edge between nodes corresponding to the regions that have only two
different entries in their hyperplane coordinates, i.e., only if one pairwise comparison yields
opposite results. Accordingly, neighboring regions have common (d− 1)-dimensional faces in
between. We define the weight matrix W for the graph regularization as follows,

Wi,j = ∥H:,i −H:,j∥−1
1 /(αiαj), (4)

where α = [α1, . . . , α|H(T)|]
T represent the volumes of regions with corresponding mass p =

[p1, . . . ,p|H(T)|]
T . Each entry of W is the weighted inverse of the Hamming distance between

corresponding nodes i and j, where H:,i is the i-th column of the matrix H. Furthermore,
since the regions in H(T) are not equal in size, we normalize with the volumes of the regions.
One can similarly construct different weight matrices for regularization as long as the entries
are inversely proportional to the distances between nodes. Heat kernel weighting [BN01], 0-1
weighting [CHHH11] are some of the widely used ones in the literature. We use W defined in
equation (4) and form following graph Laplacian regularizer:

1

2

|H(T)|∑
i=1

|H(T)|∑
j=1

|pi − pj |2Wi,j =: pTDp− pTWp

=: pTLp, (5)

where Di,i =
∑|H(T)|

j=1 Wi,j , Di,j = 0 when i ̸= j and L = D−W. Using this regularizer, we
propose the following optimization problem for recovering p⋆

H(T):

10

p̂H(T) := arg minp≥0,1⊤p=1

1

2
||Hp− q̂||22 +

λ

2
pTLp

:= arg minp≥0,1⊤p=1

1

2
||Rp− b̂||22, (6)

where RTR = HTH+ λL by Cholesky decomposition and b̂ = R−THT q̂. The regularizer in
equation (5) encourages the changes in nearby regions to be smooth, which is similar to the local
invariance property considered in [BN01, CHHH11, HCL06]. Weighted Laplacian regularizer
L imposes a penalty on p in such a way that potential values correlated with eigenvectors
of L are diminished. Therefore, eigenvectors corresponding to larger eigenvalues cause more
penalty. Note that the eigenvectors of L are mutually orthogonal by spectral theorem. So, we
conclude that orthogonal eigenvectors of nonzero eigenvalues force the potential solution to
be close to the distribution α by diminishing possible directions other than α, where α is the
normalized α. We provide the following recovery guarantee using the solution to the proposed
regularized optimization problem.

Theorem 5.2. The convex optimization problem in (6) has a unique solution. Furthermore,
with probability at least 1− δ, the total variation distance between p⋆

H(T) and the recovered
mass p̂H(T) is bounded as follows,

TV(p⋆
H(T), p̂H(T)) ≤

λ

2

√
|H(T)|∥R−1∥22∥L∥

∥∥∥p⋆
H(T) − α

∥∥∥+ |T ||H(T)|√
2

∥R−1∥22

√
log(4|T |/δ)

2np
,

where np is the number of users queried per pairwise comparison query.

The maximum singular value of L and the minimum singular value of R play an important role
in determining the first component of the bound. On the other hand, the second component
tends towards 0 as the number of users increases.

L2 Regularization: Using L2 regularizer, we can obtain the following optimization problem:

p̂H(T) := arg minp≥0,1⊤p=1

1

2
||Hp− q̂||22 +

λ

2
pTp

:= arg minp≥0,1⊤p=1

1

2
||Rp− b̂||22,

This can be cast as a specific version of graph regularizer with a special Laplacian regularizer
I, where RTR = HTH+ λI and b̂ = R−THT q̂. Similarly, we can write the following recovery
guarantees.

TV(p⋆
H(T), p̂H(T)) ≤

λ

2

√
|H(T)|∥R−1∥22

∥∥∥p⋆
H(T) − α

∥∥∥
2
+
|T ||H(T)|√

2
∥R−1∥22

√
log(4|T |/δ)

2np
,

6 Experimental Results

We evaluate the proposed approaches for both simulated and real datasets. We quantify the
total variation distance (TV) and Wasserstein distance between p⋆

H(T) and the recovered mass

11

in partitions H(T). For 1D setting, we use Wasserstein-1 distance; and for higher dimensional
settings, we use the graph Wasserstein distance with normalized cost matrix written as follows,

WG(p
⋆
H(T), p̂H(T)) := min

K∈M(K)

|H(T)|∑
i=1

|H(T)|∑
j=1

Ki,jCi,j ,

where Ci,j is the ratio of distance between nodes i and j to the maximum length on the graph
induced by matrix H; and M(K) := {K : K ≥ 0, K1 = p⋆

H(T), KT1 = p̂H(T)}. Note that
the total variation distance does not differentiate between whether the mass is moved between
neighbor regions or any faraway region. Whereas Wasserstein distances take into account the
geometry and hence distinguish between these scenarios.

For simulations, we consider four true user distributions: uniform, Gaussian, a mixture of two
Gaussians, and a mixture of three Gaussians. We present simulation results with a mixture of
three Gaussians here and defer the rest to the appendix. We also consider two types of noises.
(a) Bernoulli(pflip) that flips a simulated user’s answer with probability pflip. (b) flipping
the answer of user u for pair xa,xb with probability 1

1+e−cddiff
, where c is a scaling factor

and ddiff = −|(dist(xa,u) − dist(xb,u))|. Here, we provide results only for pflip = 0.01 and
c = 500, and defer a more comprehensive analysis to the appendix. We sample m = 5 items
uniformly at random from [−1, 1]d. For each pairwise comparison among the items, we sample
users from the underlying distribution, repeating 10 times. We use CVXPY [DB16, AVDB18],
ECOS [DCB13], and Gurobi [Gur23] to solve optimization problems and run all simulations
on Python 3.11. Parallel computations are done using GNU Parallel [Tan18], CHTC [Cen06],
and OSG Consortium [PPK+07, SBH+09, OSG06].

1D Simulations: Figure 4 (a-b) show the relationship between the number of people asked
per query, np, and the error, by varying np ∈ {102, 103, 104, 105}. As shown in our analysis,
the recovery gets better as the number of users increases.

102 103 104 105

no. people per pair (np)

0.00

0.02

0.04

0.06

0.08

0.10

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

noiseless
Bern(0.01)
Sigmoid

102 103 104 105

no. people per pair (np)

10−3

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(b)

noiseless
Bern(0.01)
Sigmoid

Figure 4: 1D setting: (a) TV(p⋆
H(T), p̂H(T)) and (b) W1(p

⋆
H(T), p̂H(T)) for mixture of 3 Gaussians.

Colors dataset: Colors dataset [PS10, PSS13] consists of answers to pairwise queries from 48
different users and 37 colors. Each person was asked all

(
37
2

)
pairwise comparisons. Each color

is considered as a 3-dimensional vector in CIELAB color space (lightness, red vs. green, blue
vs. yellow). For our experiment, we use the 1D user embedding of the colors dataset learned
in [CMKVN22]. We then project the CIELAB color space onto the user embedding space.

12

102 103 104 105

no. people (N)

0.1

0.2

0.3

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

-65.35 -42.89 -22.81 0.44
x

0.00

0.01

0.02

0.03

0.04

p(
x)

(b)

Population Density
Estimated Density

Figure 5: (a) TV(p⋆
H(T), p̂H(T)) by varying number of people (b) p⋆

H(T) and p̂H(T) for Colors dataset.

We consider a subset of m = 5 colors sampled from this space and use all 10 pairs for
comparison. Then, we uniformly sample {102, 103, 104, 105} users from all 48 user preference
points with replacement for each pair to estimate p̂H(T) and report TV(p⋆

H(T), p̂H(T)) in
Figure 5 (a). Figure 5 (b) shows the true preference distribution for the population (computed
using multiple queries per user on a separate set of users) and the distribution recovered via
our method.

Simulations for d ≥ 2: Figure 6 (a-b) shows the relationship between the number of people
asked per query, np, and the error for d = 2. We use λ = 1 here and defer results with varying
regularization parameter λ to the appendix.

101 102 103 104

no. people per pair (np)

0.0

0.1

0.2

0.3

0.4

0.5

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

Noiseless
Bern(0.01)
Sigmoid

101 102 103 104

no. people per pair (np)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless
Bern(0.01)
Sigmoid

Figure 6: (a) TV(p⋆
H(T), p̂H(T)), (b) WG(p

⋆
H(T), p̂H(T)) for mixture of 3 Gaussians in 2D (p̂H(T) is

recovered using graph regularization).

We also provide simulation results using l1, l2-norm regularization, and maximum likelihood
estimate (KL) as baselines in Figure 7. Additionally, to compare the performance between
our method and Mallows model-based method, we implemented the EM algorithm described
in [LB14] that learns a mixture of Mallows model. Details regarding the EM algorithm are

13

deferred to the appendix. Figure 7 includes the result with 2 mixtures.

101 102 103 104

no. people per pair (np)

10−1

100
W
G(

p̂
H

(T
),

p
? H

(T
))

Least Square + L2
KL

Least Square + L1
Least Square + Graph

Lu and Bountilier (K = 2)
Least Square

Figure 7: WG(p
⋆
H(T), p̂H(T)) for different objective functions with varying np.

Bounds on the Mass: We generate the true underlying preferences from a mixture of 3
Gaussians in 2D. We query for 5 pairs of items and 10, 000 users per pair. Figure 8 shows
the upper and lower bounds on the mass in each of the regions in the intersection of the
5 hyperplanes using equations (2). We also show the true mass induced by the underlying
distribution in these regions which highlights the efficacy of our bounds.

0 2 4 6 8 10 12
region ID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

p?H(T)

upper bound of p?H(T)

lower bound of p?H(T)

Figure 8: Lower and upper bounds with the true underlying distribution, a mixture of 3 Gaussians.

6.1 Zappos

UT Zappos50K [YG14, YG17] is a large dataset with 50, 025 catalog images of shoes in different
categories, such as shoes, sandals, slippers, and boots. Each major category includes several
minor categories. For instance, within the Boots category, you can find Ankle, Knee High,

14

Major Category Minor Category

Boots Ankle, Knee High, Mid-Calf, Over the Knee,
Prewalker Boots

Sandals Athletic, Flat, Heel

Shoes
Boat Shoes, Clogs and Mules, Crib Shoes, First-
walker, Flats, Heels, Loafers, Oxfords, Prewalker,
Sneakers and Atheletic Shoes

Slippers Boot, Slipper Flats, Slipper Heels

Table 1: Major and minor categories in the Zappos dataset.

Mid-Calf, Over the Knee, and Prewalker Boots. Table 1 shows the major and minor categories
in the Zappos dataset.

We manually pick five shoes (Figure 9) from this dataset and collect responses from 6000
Amazon Mechanical Turk [AMT] workers for each possible pairwise query. With a subset of
workers’ answers to each possible pair, we estimate p⋆

H(T) and use the remaining workers to
answer pairwise comparison queries using only one response per worker to estimate p̂. We
also use the method in [LB14] to estimate p̂.

Figure 9: The 5 shoes we pick for pairwise comparison task on Amazon Mechanical Turk.

Data Preprocessing: We consider minor category, that has a cardinality of 21, as the label
space. To ensure that all the images have the same dimension, we use the Zappos image square
dataset. Then, we resize them to 135× 135. Lastly, we convert the images into grey scale.

We train a modified VGG11 convolutional neural network [SZ14] on the Zappos dataset.
VGG11 is intended to be trained on ImageNet [DDS+09], which has 1000 classes. We modify
the last layer of the network so that it works with 21 classes. We insert a new layer as the
penultimate layer of the network. This is because the original penultimate layer has an output
of dimension 4096, which is too large. By reducing it to 512, we can employ the output of this
penultimate layer as the embedding for the Zappos dataset.

Training: We use 80% of the dataset as the training set and the rest as the test set, both
with a batch size of 64. We use SGD optimizer with learning rate 0.01, momentum 0.9, and
weight decay 0.0005. After 12 epochs, we achieve a training accuracy of 94.05% and a test
accuracy of 86.81%. To generate an embedding for the Zappos dataset, we feed the entire
dataset into the trained network and extract the output from the penultimate layer, resulting
in a matrix of dimensions 50066× 512. We use PaCMAP [WHRS21a] with default parameters
to obtain the 2D embedding of shoes as shown in Figure 10.

15

Figure 10: 2D embedding of the 5 shoes obtained using penultimate layer of modified VGG11
and PaCMAP. Each color represents a minor category. 5 shoes we used for experiments are
also located.

Data Collection via Crowdsourcing: We pick 5 shoes as our query item set (Figure
9). We posted this task on Amazon Mechanical Turk [AMT]. Each task has 15 pairwise
comparison queries (10 pairs and 5 repeats). The median time taken per query is around 2.58s
and for the task (15 pair comparisons) is ∼ 47s. Each worker is paid 15 cents per task. This
is roughly ∼ $7 per hour. We did not restrict the task to the master workers. The task was
open to all those who had at least 500 HITs approved and 95% approval rate. Figure 11 shows
the instructions provided and the interface for answering pairwise comparison queries.

16

Figure 11: Amazon Mechanical Turk Task interface

Figure 12 shows the results of our experiments on this dataset. More details of data collection
via crowdsourcing and further experimental results are deferred to the appendix.

0 10 20 30 40
region ID

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

(a)

0 10 20 30 40
region ID

(b)
Lu and Boutilier (K = 2)
p̂H(T) (Ours)

p?H(T)

upper bound p?H(T)

lower bound p?H(T)

Figure 12: (a) True p⋆
H(T) and p̂H(T) recovered by our method in comparison to the EM algorithm in

[LB14] for Zappos dataset. (b) Estimated upper and lower bounds for p⋆
H(T) in Zappos dataset.

17

6.2 Movies

We create a new dataset comprising 4, 266 movies from different countries, produced between
2013 and 2022, inclusive. Each movie is associated with its plot and info scrapped from
[Wik23]. We utilize text-embedding-ada-002 model from [Ope23] to generate an embedding
for each movie. Then, we train a regression neural network with these embedding as input,
and the target is each movie’s average IMDB [IMD23] rating. We obtain the 100-dimensional
output from the penultimate layer and reduce it to 2D using PaCMAP [WHRS21b]. In the
subsequent experiment, we consider the 2D embedding as the coordinates for the movies. We
scrape the ratings of critics and audiences from [Tom23] and use them to create answers to
pairwise comparison queries. For pairwise comparisons task, we pick the following 2 sets of
movies in a way that most of the movies in those 2 sets have unbalanced opinion in terms of
critics by general audience:

• DCEU superheroes (12 DC superhero movies)

• Movie2 (7 movies from US, China, and South Korea)

For regression task, we use 80% of the movies as the training set and the rest as the test
set, where batch size 4. We use SGD optimization with learning rate 0.0001, momentum 0.9,
Huber loss. After 250 epochs, we reach a mean average error of 0.63 on the test set. We scrap
critics and audience ratings for selected movies from Rotten Tomatoes. Then, we construct a
set of users for each movie from its reviewers. We look for intersections of user sets for each
pair of movies. If the size of intersection is small, we discard the corresponding pair. Since
movies in DCEU have the similar type and are from the same franchise, it is more likely that
we encounter common reviewers. Hence, the definition of small size of intersection is different
for the 2 sets. For DCEU, we discard pairs whose size of intersection is less than 200. For
Movie2, we discard pairs whose size of intersection is less than 50. This process leaves us with
9 pairs of movies for DCEU and 3 pairs of movies for Movie 2.

0 5 10 15 20
region ID

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

(a)

0 5 10 15 20
region ID

(b)

Lu and Boutilier (K = 2) p̂H(T) (Ours) upper bound p?H(T) lower bound p?H(T)

Figure 13: (a) p̂H(T) recovered by our method in comparison to EM algorithm in [LB14] for DCEU
movies dataset (b) Estimated upper and lower bounds for p⋆

H(T) in movie set.

For a given pairwise comparison query based on movie pairs, a randomly selected reviewer
picks the one that has a higher rating (rated by the same reviewer). If both movies in a pair

18

have the same rating, we pick the movie on the left of the pair. After a reviewer answered one
query, we are done with this reviewer. We perform 100 repetitions of calculating p̂H(T) by
reshuffling users each time, where np = 50 for DCEU and np = 25 for Movie2. Since we do
not query any user more than once, we do not have enough information to estimate p⋆

H(T),
unlike our experimental work on the Zappos dataset. Figure 13 illustrates the probability mass
recovered by our algorithm and EM algorithm in [LB14] with K = 2, and estimated upper
and lower bounds. Figure 14 (a) (b) show the p̂ recovered using our method and the bounds
for p⋆ for the DCEU movie set. Figure 14 (c) (d) show the p̂ recovered using our method and
the bounds for p⋆ for the Movie2 movie set.

0 5 10 15 20
region ID

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

(a)

0 5 10 15 20
region ID

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

(b)

0 1 2 3 4 5 6
region ID

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

(c)

0 1 2 3 4 5 6
region ID

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

(d)

p̂H(T) upper bound of p?H(T) lower bound of p?H(T)

Figure 14: (a) p̂ recovered for the DCEU movie set (b) Bounds for p⋆ for the DCEU movie
set (c) p̂ recovered for the Movie2 movie set (d) Bounds for p⋆ for the Movie2 movie set.

Figure 15 and 16 shows the regions formed by the hyperplanes and the movies’ location in the
embedding space for DCEU and Movie2 movie sets, respectively.

−1 1
−1

1

0, 0.000

1, 0.307

2, 0.072

3, 0.000

4, 0.000

5, 0.000

6, 0.000

7, 0.000

8, 0.000

9, 0.161

10, 0.460

11, 0.000

12, 0.000

13, 0.000

14, 0.000

15, 0.000

16, 0.000

17, 0.000

18, 0.000

19, -0.000

20, -0.000

Man of Steel

Suicide Squad

Justice League

Batman v Superman: Dawn of Justice

Wonder Woman

Aquaman

Shazam!

Birds of Prey

Wonder Woman 1984

Black Adam

The Suicide Squad

Zack Snyder’s Justice League

Figure 15: Regions formed by the hyperplanes from DCEU movie set. The numbers in each
region represent the region ID as well as the probability mass recovered by our method in that
region. Movies in the DCEU movie set are also labeled using their corresponding embedding.

19

−1 1
−1

1

0, 0.000

1, 0.718

2, 0.002

3, 0.121
4, 0.119

5, 0.001

6, 0.039

The Shape of Water

Hail, Caesar!

The Assassin

The Grandmaster

Avatar: The Way of Water

Peninsula

Ad Astra

Figure 16: Regions formed by the hyperplanes from Movie2 movie set. The numbers in each
region represent the region ID as well as the probability mass recovered by our method in that
region. Movies in the Movie2 movie set are also labeled using their corresponding embedding.

7 Conclusions and Future Work
We propose a novel problem of learning distribution of user preferences from pairwise comparison
queries. We focus on fundamental questions regarding what we can learn about the underlying
distribution from a single query per user. We show that the problem is identifiable in 1D
setting and provide recovery guarantees under the total variation distance. We show that
this problem is not identifiable in dimensions d ≥ 2. We provide upper and lower bounds
on the masses in the regions formed by the intersecting hyperplanes corresponding to the
queried pairs. We proposed using graph regularization for recovery of the masses in these
regions and provide bound on the total variation distance between the true distribution and
the estimated distribution. We validate these fundamental results on extensive numerical
simulations. Furthermore, we show the efficacy of the proposed methods on real datasets.
As a byproduct of this work, we introduce two new datasets for learning distribution of user
preferences. In the future, we would like to mathematically characterize how large the set

20

of underlying preference distribution that lead to the same answers to pairwise queries in
terms of the TV and Wasserstein distances. We would also like to further explore what other
structures on the underlying distributions make it amenable to overcome non-identifiability
and develop recovery guarantees under the graph Wasserstein distance which takes into account
the geometry of the feature space.

References

[AAFF+06] Jens Abildtrup, E Audsley, M Fekete-Farkas, C Giupponi, Morten Gylling,
P Rosato, and Mark Rounsevell. Socio-economic scenario development for
the assessment of climate change impacts on agricultural land use: a pairwise
comparison approach. Environmental science & policy, 9(2):101–115, 2006.

[ABSV14] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan. Learn-
ing mixtures of ranking models. Advances in Neural Information Processing
Systems, 27, 2014.

[AMT] AMT. Amazon mechanical turk. https://www.mturk.com/. Accessed: 2023-04-
27.

[AVDB18] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A
rewriting system for convex optimization problems. Journal of Control and
Decision, 5(1):42–60, 2018.

[Bar07] Richard G. Baraniuk. Compressive sensing [lecture notes]. IEEE Signal Processing
Magazine, 24(4):118–121, 2007.

[BGN16] Aniruddha Bhargava, Ravi Ganti, and Robert D. Nowak. Active algorithms
for preference learning problems with multiple populations. arXiv: Machine
Learning, 2016.

[BHS15] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2015.

[BM07] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. arXiv
preprint arXiv:0707.1051, 2007.

[BN01] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In T. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems, volume 14. MIT
Press, 2001.

[BT52] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block
designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345,
1952.

[Buc43] R. C. Buck. Partition of space. The American Mathematical Monthly, 50(9):541–
544, 1943.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

21

https://www.mturk.com/

[Cen06] Center for High Throughput Computing. Center for high throughput computing,
2006.

[CHHH11] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S. Huang. Graph regularized
nonnegative matrix factorization for data representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(8):1548–1560, 2011.

[CMKVN22] Gregory Canal, Blake Mason, Ramya Korlakai Vinayak, and Robert Nowak.
One for all: Simultaneous metric and preference learning over multiple users.
Advances in Neural Information Processing Systems, 35:4943–4956, 2022.

[Con17] Laurent Condat. Least-squares on the simplex for multispectral unmixing. Res.
Rep, GIPSA-Lab, Univ. Grenoble Alpes, Grenoble, France, 2017.

[Coo50] Clyde H Coombs. Psychological scaling without a unit of measurement. Psycho-
logical review, 57(3):145, 1950.

[CW08] Emmanuel J. Candes and Michael B. Wakin. An introduction to compressive
sampling. IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[DB16] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded model-
ing language for convex optimization. Journal of Machine Learning Research,
17(83):1–5, 2016.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In European Control Conference (ECC), pages 3071–3076, 2013.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[Din16] Cody Ding. Evaluating change in behavioral preferences: Multidimensional
scaling single-ideal point model. Measurement and Evaluation in Counseling and
Development, 49(1):77–88, 2016.

[Ela10] Michael Elad. Sparse and redundant representations: From theory to applications
in signal and image processing, 2010.

[Eri13] Brian Eriksson. Learning to top-k search using pairwise comparisons. In Artificial
Intelligence and Statistics, pages 265–273. PMLR, 2013.

[Fic86] John Fichtner. On deriving priority vectors from matrices of pairwise comparisons.
Socio-Economic Planning Sciences, 20(6):341–345, 1986.

[Fou14] Simon Foucart. Stability and robustness of ℓ1-minimizations with weibull matrices
and redundant dictionaries. Linear Algebra and its Applications, 441:4–21, 2014.
Special Issue on Sparse Approximate Solution of Linear Systems.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive
sensing. In Applied and Numerical Harmonic Analysis, 2013.

[Gre75] Paul E. Green. Marketing applications of mds: Assessment and outlook. Journal
of Marketing, 39(1):24–31, 1975.

22

[Gur23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[HCL06] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742, 2006.

[HN22] Daniel J Hopkins and Hans Noel. Trump and the shifting meaning of “conser-
vative”: Using activists’ pairwise comparisons to measure politicians’ perceived
ideologies. American Political Science Review, 116(3):1133–1140, 2022.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[Hun04] David R Hunter. Mm algorithms for generalized bradley-terry models. The
annals of statistics, 32(1):384–406, 2004.

[IMD23] IMDB. Imdb non-commercial dataset. https://developer.imdb.com/
non-commercial-datasets/, 2023. Accessed: 2023-5-12.

[JMN17] Lalit Jain, Blake Mason, and Robert Nowak. Learning low-dimensional metrics,
2017.

[JN11] Kevin G Jamieson and Robert Nowak. Active ranking using pairwise comparisons.
Advances in neural information processing systems, 24, 2011.

[Joh71] Richard M. Johnson. Market segmentation: A strategic management tool.
Journal of Marketing Research, 8(1):13–18, 1971.

[KMS07] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 95–103, 2007.

[KT21] Richard Kueng and Joel A Tropp. Binary component decomposition part i:
the positive-semidefinite case. SIAM Journal on Mathematics of Data Science,
3(2):544–572, 2021.

[Kul12] Brian Kulis. Metric learning: A survey. Foundations and Trends in Machine
Learning, 5, 01 2012.

[LB14] Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models
with pairwise-preference data. J. Mach. Learn. Res., 15(1):3783–3829, 2014.

[LM18] Allen Liu and Ankur Moitra. Efficiently learning mixtures of mallows models.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 627–638. IEEE, 2018.

[Luc59] R Duncan Luce. Individual choice behavior: A theoretical analysis. New York:
Wiley, 1959.

[LV20] Mahsa Lotfi and Mathukumalli Vidyasagar. Compressed sensing using binary
matrices of nearly optimal dimensions. IEEE Transactions on Signal Processing,
68:3008–3021, 2020.

[Mal57] C. L. Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

23

https://developer.imdb.com/non-commercial-datasets/
https://developer.imdb.com/non-commercial-datasets/

[MD21] Andrew K Massimino and Mark A Davenport. As you like it: Localization via
paired comparisons. J. Mach. Learn. Res., 22:186–1, 2021.

[MW22] Cheng Mao and Yihong Wu. Learning mixtures of permutations: Groups of
pairwise comparisons and combinatorial method of moments. The Annals of
Statistics, 50(4):2231–2255, 2022.

[NOS12] Sahand Negahban, Sewoong Oh, and Devavrat Shah. Iterative ranking from
pair-wise comparisons. Advances in neural information processing systems, 25,
2012.

[OHS+05] Shigehiro Oishi, Jungwon Hahn, Ulrich Schimmack, Phanikiran Radhakrishan,
Vivian Dzokoto, and Stephen Ahadi. The measurement of values across cultures:
A pairwise comparison approach. Journal of research in Personality, 39(2):299–
305, 2005.

[Ope23] OpenAI. text-embedding-ada-002. https://openai.com/blog/
new-and-improved-embedding-model, 2023. Accessed: 2023-5-12.

[OSG06] OSG. Ospool, 2006.

[PPK+07] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. The open
science grid. In J. Phys. Conf. Ser., volume 78 of 78, page 012057, 2007.

[PPP18] Camille Poignard, Tiago Pereira, and Jan Philipp Pade. Spectra of laplacian
matrices of weighted graphs: Structural genericity properties. SIAM Journal on
Applied Mathematics, 78(1):372–394, 2018.

[PS10] Stephen E Palmer and Karen B Schloss. An ecological valence theory of human
color preference. Proceedings of the National Academy of Sciences, 107(19):8877–
8882, 2010.

[PSS13] Stephen E Palmer, Karen B Schloss, and Jonathan Sammartino. Visual aesthetics
and human preference. Annual review of psychology, 64:77–107, 2013.

[RA14] Arun Rajkumar and Shivani Agarwal. A statistical convergence perspective of
algorithms for rank aggregation from pairwise data. In International conference
on machine learning, pages 118–126. PMLR, 2014.

[SBGW16] Nihar Shah, Sivaraman Balakrishnan, Aditya Guntuboyina, and Martin Wain-
wright. Stochastically transitive models for pairwise comparisons: Statistical
and computational issues. In International Conference on Machine Learning,
pages 11–20. PMLR, 2016.

[SBH+09] Igor Sfiligoi, Daniel C Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwein. The pilot way to grid resources using glideinwms. In
2009 WRI World Congress on Computer Science and Information Engineering,
volume 2 of 2, pages 428–432, 2009.

[Sch13] Rolf Schneider. Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2 edition, 2013.

24

https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model

[She62a] Roger Shepard. The analysis of proximities: Multidimensional scaling with an
unknown distance function. I. Psychometrika, 27(2):125–140, June 1962.

[She62b] Roger N. Shepard. The analysis of proximities: Multidimensional scaling with
an unknown distance function. ii. Psychometrika, 27:219–246, 1962.

[She66] Roger N. Shepard. Metric structures in ordinal data. Journal of Mathematical
Psychology, 3:287–315, 1966.

[STK16] Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Actively learning
hemimetrics with applications to eliciting user preferences. In International
Conference on Machine Learning, pages 412–420. PMLR, 2016.

[SV12] Thomas L Saaty and Luis G Vargas. The possibility of group choice: pairwise
comparisons and merging functions. Social Choice and Welfare, 38(3):481–496,
2012.

[SW17] Nihar B Shah and Martin J Wainwright. Simple, robust and optimal ranking from
pairwise comparisons. The Journal of Machine Learning Research, 18(1):7246–
7283, 2017.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[Tan18] Ole Tange. GNU parallel 2018. Lulu. com, 2018.

[TNV22] Gokcan Tatli, Rob Nowak, and Ramya Korlakai Vinayak. Learning preference
distributions from distance measurements. 58th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2022.

[Tom23] Rotten Tomatoes. Rotten tomatoes. https://www.rottentomatoes.com/, 2023.
Accessed: 2023-5-12.

[WHRS21a] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Un-
derstanding how dimension reduction tools work: an empirical approach to
deciphering t-sne, umap, trimap, and pacmap for data visualization. The Journal
of Machine Learning Research, 22(1):9129–9201, 2021.

[WHRS21b] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Un-
derstanding how dimension reduction tools work: An empirical approach to
deciphering t-sne, umap, trimap, and pacmap for data visualization. Journal of
Machine Learning Research, 22(201):1–73, 2021.

[Wik23] Wikipedia. Wikipedia. https://en.wikipedia.org/, 2023. Accessed: 2023-5-
12.

[XD20] Austin Xu and Mark Davenport. Simultaneous preference and metric learning
from paired comparisons. Advances in Neural Information Processing Systems,
33:454–465, 2020.

[YG14] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local
learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 192–199, 2014.

25

https://www.rottentomatoes.com/
https://en.wikipedia.org/

[YG17] Aron Yu and Kristen Grauman. Semantic jitter: Dense supervision for visual
comparisons via synthetic images. In Proceedings of the IEEE International
Conference on Computer Vision, pages 5570–5579, 2017.

[ZZLL22] Xiaomin Zhang, Xucheng Zhang, Po-Ling Loh, and Yingyu Liang. On the
identifiability of mixtures of ranking models. arXiv preprint arXiv:2201.13132,
2022.

A Limitations

We study the novel problem of learning populations of preferences via pairwise comparison
queries when we are limited to making one query per individual. We show that the problem is
identifiable in 1D setting and provide recovery guarantees. Further, we show that the problem
is not identifiable in dimensions d ≥ 2. Linear system of equations in (1) is underdetermined in
dimensions d ≥ 2. So, we cannot recover p⋆

H(T) in dimensions d ≥ 2, unless the true solution
p⋆
H(T) is sparse and satisfies certain geometric property. Therefore, we propose using graph

regularization for recovery of masses in H(T) and provide recovery guarantees. Our recovery
guarantees are limited to the noiseless setting. For noisy settings, we show simulation results
that are promising. Furthermore, the suitability of the regularizer depends on the property of
underlying distribution of preferences. We have explored one such regularization technique
in this work. Theoretical analysis of noisy setting and other regularizers suited for different
properties would be interesting to study in the future.

In this work, we focus on the case where we can only make one comparison query per individual.
On the other end, if we can make Õ(d) queries per individual, we can estimate individual
preferences. We expect there is a trade-off between these two regimes, that is, single query per
individual to enough queries to learn individual preference points, in terms of information gain
regarding the underlying distribution of preferences, which is left to future work for further
investigation.

In our problem setup, we assume that item representations are known and learn the distribution
of preferences. In the era of large foundational models, we presume that we can learn feature
representation of items as we did in our experiments in the paper. On the other hand,
euclidean distance in the item representation space might not reflect the correct embeddings
for the judgements of the population. So, one can try to learn the distance function or
tune the embeddings further to reflect human judgements. In our experiments, we use other
regression or classification tasks to refine the pre-trained embeddings to lower dimensional
feature space. However, there is a rich line of research about learning distance metric using
triplet queries of type “Is a closer to b or c?”, and often low-dimensional metrics seem to capture
human preferences well [She62b, She62a, She66, Kul12, BHS15, JMN17]. Note that learning
metric from triplet queries is essentially akin to contrastive learning in the deep learning
literature. Recent works [XD20, CMKVN22] have proposed learning metric and preferences
simultaneously from pairwise comparison queries where both unknown metric and unknown
user preferences are learned simultaneously. So, these methods need learning user preferences
as well and therefore need at least Õ(d) queries per individual. We leave it as a future direction
to explore the problem of learning distribution of preferences for an unknown metric without
learning user preferences exactly.

26

B Proofs

B.1 Proof of Theorem 4.1

We recall that p̂H(T) is the solution to the constrained least square optimization problem
with unit simplex constraint in Section 4. Then, as discussed in pages 301-302 of [BV04] and
mentioned in [Con17], and also observed in the proof of Theorem 2 in [TNV22], we note that
Hp̂H(T) is the projection of q̂ onto the closed convex set CH under ℓ2 distance, which we call
PCH

(q̂), where
CH := conv(He1, . . . ,Hem).

Therefore, we can write

||p∗
H(T) − p̂H(T)||2 = ||H†(q⋆ − PCH

(q̂))||2
≤ ||H†||2||q⋆ − PCH

(q̂)||2
≤ ||H†||2||q⋆ − q̂||2
≤ ||H†||2||q⋆ − q̂||1, (7)

where the inequality (7) is due the property that the projection onto closed convex sets is
contracting (Thm. 1.2.2. in [Sch13]). Then, we note that 2 TV(p⋆

H(T), p̂H(T)) = ||p∗
H(T) −

p̂H(T)||1, and use l1 − l2 norm inequality to obtain the following from (7),

TV(p⋆
H(T), p̂H(T)) =

1

2
||p∗

H(T) − p̂H(T)||1 ≤
1

2

√
|T |+ 1||p∗

H(T) − p̂H(T)||2

≤ 1

2

√
|T |+ 1||H†||2||q̂− q⋆||1.

Recall from Section 4, H can be written as the concatenation of one lower triangular and one
upper triangular binary matrix, e.g., 3 pairs create 4 regions, and the corresponding matrix

H =



1 0 0 0
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1
0 0 0 1


Each possible H matrix from Theorem 4.1 has a similar structure with |T | 1’s in each column
with shifted positions as we pass through columns. This very specific structure allows us
to express a left inverse H† = 1

|T |1|T |+11
T
2|T | + S = (− 1

|T |1|T |+11
T
|T |+1 + I)S, where S is

(|T |+ 1)× 2|T | with Si,j = −1 when j = i− 1 and j = i+ |T |, and Si,j = 0 everywhere else.
For the given example above,

H† =


1/3 1/3 1/3 −2/3 1/3 1/3
−2/3 1/3 1/3 1/3 −2/3 1/3
1/3 −2/3 1/3 1/3 1/3 −2/3
1/3 1/3 −2/3 1/3 1/3 1/3

 with S =


0 0 0 −1 0 0
−1 0 0 0 −1 0
0 −1 0 0 0 −1
0 0 −1 0 0 0

 .

Note that, by construction, S has only one non-zero entry in each column and 2 non-zero
entries in each row except first and second rows which have 1 nonzero entry. Therefore, SST

27

is a diagonal matrix such that S1,1 = S|T |+1,|T |+1 = 1 and the rest is 2. It easily follows that
∥S∥2 =

√
2, since ∥SST ∥2 = 2. We also note that

∥H†∥2 = ∥(−
1

|T |11
T + I)S∥2 ≤ ∥ −

1

|T |11
T + I∥2∥S∥2 = 1 ∗

√
2 =
√
2. (8)

Therefore, we can write

TV(p⋆
H(T), p̂H(T)) ≤

√
|T |+ 1

2
∥q̂− q⋆∥1. (9)

Now, note that the term ||q̂ − q⋆||1 is the sum of l1- distances between the empirical and
the true fraction of people on either side of hyperplanes in T . Therefore, any entry q̂i can
be considered a summation of np binary random variables with mean q⋆

i , i.e., E[q̂i] = q⋆
i ,

where np is the number of people queried per pairwise comparison query. We, then, can apply
Hoeffding’s inequality [Hoe63] (which we have restated below) for each pair queried (i.e., for
each hyperplane) to obtain a bound for |q̂i − q⋆

i | and write that,

|q̂i − q⋆
i | ≤

√
log (2/δ′)

2np
(10)

holds with probability at least 1− δ′. We then use union bound bound over all the |T | pairs
to obtain the bound on ∥q̂− q⋆∥1.

Hoeffding’s Inequality [Hoe63]: Let X1, X2 . . . , XN be independent random variables
such that ai ≤ Xi ≤ bi and let SN :=

∑N
i=1Xi, then for all t > 0,

Pr(|SN − E(SN)| ≥ t) ≤ 2 exp

(
− 2t2∑N

i=1(bi − ai)2

)
. (11)

B.2 Proof of Proposition 2

We first note that the entry-wise product, i.e., Hadamard product, of the rows of H that
correspond to the columns with 1’s in the j-th position leads to a standard vector with 1 in
the j-th entry. So, we can write the following,

ej =
⊙∏

i∈Kj

Hi,:, j = 1, . . . , |H(T)|, (12)

where ej is the standard basis vector with j-th entry is 1, ⊙ represents Hadamard product
operation and Kj denotes the set of rows of H whose j-th entry is 1. Then, considering the
structure of matrix H, we note that

2|T |∑
i=1

λiHi,: =

|T |∑
i=1

(λi − λ|T |+i)Hi,: +

 |T |∑
i=1

λ|T |+i

1.

If
∑|T |

i=1(λi − λ|T |+i)Hi,: +
(∑|T |

i=1 λ|T |+i

)
1 = 0 holds only when λi − λ|T |+i = 0 for all

i = 1, . . . , |T | and
∑|T |

i=1 λ|T |+i = 0, we can claim that 1 and Hi,:’s for i = 1, . . . , |T | are
linearly independent. Therefore, we suppose that

2|T |∑
i=1

λiHi,: =

|T |∑
i=1

(λi − λ|T |+i)Hi,: +

 |T |∑
i=1

λ|T |+i

1 = 0.

28

Now, we take |T |-th power of the left-hand side with respect to Hadamard product and write
it as follows: 2|T |∑

i=1

λiHi,:

⊙|T |

= 0 (13)

Considering results of all products in given expression, we can write following Lemma.

Lemma 1. Given the binary matrix H ∈ {0, 1}2|T |×|H(T))| in (1) and real coefficients λi’s, we
can write following 2|T |∑

i=1

λiHi,:

⊙|T |

=

2|T |∑
j=1

∑
i∈Kj

λi

|T |

ej ,

where Kj is the position of rows of H whose j-th entry is 1 and ej ’s are standard basis vectors.

Lemma 2. Given the binary matrix H in Section 2, for any j ≤ |T |, we can find two columns
H:,j1 and H:,j2 such that only j-th and (|T |+j)-th entries of H:,j1 and H:,j2 differ.

Proof: Each hyperplane has to form neighboring regions by construction. Therefore, there
exists two columns H:,j1 and H:,j2 such that only j-th and (|T |+j)-th entries differ. To
understand it better, we can consider a scenario where we delete j-th row of the matrix H
and call Hj to this new matrix. Hj has to have a pair of same columns. Otherwise, we would
conclude that j-th hyperplane does not form new regions, which is not possible by construction,
when we consider adding one hyperplane at a time to end up with final partition. We can
also refer to the fact that each hyperplane has to divide at least one previous region into two,
when that specific hyperplane is added.

Then, from Lemma 1, (13) yields that

2|T |∑
j=1

∑
i∈Kj

λi

|T |

ej = 0,

which happens only if ∑
i∈Kj

λi = 0, j = 1, . . . , |H(T)|,

since standard basis vectors are linearly independent. From Lemma 2, it follows that we can
find two numbers j1 and j2 for all j = 1, . . . , |H(T)| such that∑

i∈Kj1

λi =
∑
i∈Kj2

λi = 0,

where j ∈ Kj1 , |T | + j ∈ Kj2 and Kj1\{j} = Kj2\{|T | + j}. Therefore, we conclude that
λj = λ|T |+j for all j = 1, . . . , |H(T)|. Now, (13) implies

∑|T |
i=1 λ|T |+i = 0, which confirms the

claim that rank(H) = |T |+ 1.

For the nonuniquness of the solution to the linear system of equations (1), we refer to the
discussion below (Section B.3), where we argue that the solution is not unique even for some
sparse cases, and complete the proof of Proposition 2.

29

B.3 Sparsity

We first recall that half of the rows among 2|T | rows of H reflect the mass on the other side
of each hyperplane. Basically, adding a row of all ones makes half of the rows redundant,
since the rows representing the mass on the other side of each hyperplane are just flipped
versions of rows representing the mass on the first side, i.e., Hi+|T |,: = 1T −Hi,:. We call Hhalf
to the simplified version of H. Then, we note that rank(Hhalf) = rank(H) = |T |+ 1 from
Proposition 2. Therefore, we cannot make further simplifications on H to get redundant rows.

Now, we consider the simplified version Hhalf and recall that any solution p⋆
H(T) to the problem

setting in (1) has to be in the probability simplex. Therefore, all possible q̂half vectors belong
to the convex hull of columns of matrix Hhalf, which we call conv(Hhalf). Then, we apply
Carathéodory’s Theorem and write following expression. Each element in conv(Hhalf) can be
written as a convex combination of at most |T |+1 columns of Hhalf. We can easily observe that
the same property also applies to conv(H) and q̂, as they share a one-to-one correspondence
with Hhalf and q̂half, respectively.

B.4 Proof of Proposition 5

Recall that Hi,: and (ai, bi) are the row and the item pair corresponding to i-th hyperplane.
q⋆
ai,bi

denotes the true mass on the side of ai of the i-th hyperplane and Kj is the position of
rows of H whose j-th column entry is 1. q⋆

ai,bi
has p⋆

H(T)j
, j-th entry of p⋆

H(T), as a nonnegative
summand when i ∈ Kj . Therefore, we can write following:

p⋆
H(T)j

≤ min
i∈Kj

q⋆
aibi

, j = 1, . . . , |H(T)|. (14)

Using those upper bounds and nonnegativity of entries of matrix H, we can write following
set of inequalities:

H



mini∈K1 q
⋆
aibi

...
mini∈Kj−1 q

⋆
aibi

p⋆
H(T)j

mini∈Kj+1 q
⋆
aibi

...
mini∈Kl

q⋆
aibi


︸ ︷︷ ︸

Qj

≥ q⋆, j = 1, . . . , |H(T)|, (15)

which enables us to lower bound each entry p⋆
H(T)j

for j = 1, . . . , |H(T)|. Here, Qj represents
the vector constructed with minimum q⋆

aibi
’s over different sets and p⋆

H(T)j
. We also define

Qj
0 as the vector that jth entry of Qj is replaced with 0. Note that each inequality in (15) can

be rewritten as follows

HT
k,:Q

j ≥ q⋆
akbk

, k = 1, . . . , |T |.

We can also write an alternative expression by using standard basis vectors, i.e., ej ’s,:

p⋆
H(T)j

HT
k,:ej ≥ q⋆

akbk
−HT

k,:Q
j
0, k = 1, . . . , |T |,

which provides us following bound

p⋆
H(T)j

≥ max{max
i∈Kj

q⋆
aibi
−HT

i,:Q
j
0, 0}, j = 1, . . . , |H(T)|. (16)

30

Combining (14) and (16), we obtain following expression

max
i∈Kj

q⋆
aibi
−HT

i,:Q
j
0 ≤ p⋆

H(T)j
≤ min

i∈Kj

q⋆
aibi

. (17)

Below, we expand on estimation errors to replace q⋆
aibi

’s with corresponding estimates. For
any q⋆

aibi
, we can say that

|q̂aibi − q⋆
aibi
| ≤

√
log (2/δ′)

2np
(18)

holds with probability at least 1− δ′ by Hoeffding’s Inequality (see 11). Therefore, we want to
bound the probability that

|q̂aibi − q⋆
aibi
| ≥

√
log (2/δ′)

2np

holds at least for one i, where np is the number of people answering each pairwise query.
Therefore, we write following expression

Pr

⋃
i

|q̂aibi − q⋆
aibi
| ≥

√
log (2/δ′)

2ni


≤∑

i

Pr

|q̂aibi − q⋆
aibi
| ≥

√
log (2/δ′)

2ni


 (19)

≤2|T |δ′, (20)

where (19) is from union bound and (20) is due to (18). Picking δ = 2|T |δ′, we conclude that

|q̂− q⋆|1 =
∑
i

|q̂aibi − q⋆
aibi
| ≤

√
log (4|T |/δ)

2np
(21)

holds with probability at least 1− δ. Inserting it to the result in 17, we complete the proof of
Proposition 5.

B.5 Graph Regularization

In this section, we discuss about the graph regularization that we proposed using in Section 5.
We provide a standard graph regularizer without using volume weighting here to give a better
intuition about graph regularizers and why we used volume weighting in Section 5. We start
by defining following weight matrix Wunif:

Wunif
i,j = ∥H:,i −H:,j∥−1

1 , (22)

which is the inverse of the Hamming distance between nodes i and j. Accordingly, we can
write following graph Laplacian regularizer:

R =
1

2

n∑
i=1

n∑
j=1

|pi − pj |2Wunif
i,j

=
n∑

i=1

pipiD
unif
i,i −

n∑
i=1

n∑
j=1

pipjW
unif
i,j = pTDunifp− pTWunifp = pTLunifp,

where Dunif
i,i =

∑n
j=1W

unif
i,j , Dunif

i,j = 0 when i ̸= j and Lunif = Dunif −Wunif. Now, suppose
that the spectral decomposition of Lunif can be written as Lunif =

∑l
i=1 µiviv

T
i , where vi’s are

eigenvectors and µi’s are the corresponding eigenvalues. We now further elaborate on spectral
properties of Laplacian matrices and use following Lemma.

31

Lemma 3. Graph Laplacian matrices are positive semi-definite by the Gershgorin circle
theorem. Furthermore, the eigenvectors of the Laplacian matrix Lunif corresponding to zero
eigenvalues are spanned by 1, which is referred as constant vectors in [PPP18].

Then, we can rewrite Laplacian regularizer in (5) as

pTATLunifAp = pT
l∑

i=1

µiA
Tviv

T
i Ap =

l∑
i=1

µi(p
T (ATvi))

2,

where A is a diagonal matrix with the entries Ai,i = 1
αi

and
∑

iAi,i = 1. Laplacian
regularizer L = ATLunifA penalizes p so that potential p values correlated to vectors ATvi’s
are diminished. We can rephrase it as follows: regularizer penalizes p so that potential
A−1p values correlated to eigenvectors vi’s are diminished. Therefore, vi’s corresponding to
larger eigenvalues cause more penalty. From Lemma 3, it follows that Laplacian matrix L
corresponding to zero eigenvalues are spanned by A−11. In [PPP18], authors also point out
that the multiplicity of the eigenvalue is equal to the number of connected components in the
graph, which is clearly 1 in our graph structure induced by H, since the regions in H(T) are
connected. We note that the eigenvectors of Lunif are mutually orthogonal by spectral theory.
We observe that orthogonal eigenvectors of nonzero eigenvalues would force the candidate of
the solution p to be similar to uniform distribution by punishing possible directions other
than 1. However, we note that regions in H(Sm) are not similar to an equally spaced grid.
Therefore, we use a weighted version of the regularizer in (5) with respect to the volumes of
the regions in H(T) instead of Lunif and punish possible directions other than A−11, i.e. α.

B.6 Proof of Theorem 5.2

We first show that the solution to the convex optimization problem in (6) is unique. Let f(p)
be the objective function 1

2 ||Hp− q̂||22 + λ
2p

TLp. If we can guarantee that

∂2f

∂p2
= 2HTH+ 2λL ≻ 0, (23)

we deduce that solution to the convex optimization problem in (6) is unique. Therefore, we
first focus on matrix L. From Lemma 3, null space of Lunif is spanned by 1. Since A is a
full rank matrix, null space of L = ATLunifA is spanned by A−11. All entries of A−11 are
nonnegative since A−1 is a diagonal matrix with nonnegative entries. Now, we have following

HTH ⪰ 0,

L ⪰ 0,

HTH+ λL ⪰ 0.

If ker(HTH) ̸= ker(L), we can guarantee that HTH + λL ≻ 0. HTH is already positive
semidefinite and A−11 cannot be an eigenvector for HTH, since all nonzero entries of HTH
have same sign. Therefore, HTH+ λL is always positive definite.

Now, we recall that RTR = HTH+ λL and note that multiplication of each element in the
unit simplex with matrix R defines following closed convex set,

CR := conv(Re1,Re2 . . . ,Re|H(T)|).

Then, the unique solution p̂H(T) to the optimization setting in (6) can be expressed as

p̂H(T) = R−1PCR
(b), (24)

32

where b = R−THTHp∗. Therefore,

Rp̂H(T) = PCR
(R−THT q̂).

We start with bounding ℓ2 norm error and write

∥p̂H(T) − p∗
H(T)∥2 ≤ ∥R−1∥2∥Rp̂H(T) −Rp∗

H(T)∥2
= ∥R−1∥2∥Rp∗

H(T) − PCR
(R−THT q̂)∥2

≤ ∥R−1∥2∥Rp∗
H(T) −R−THT q̂∥2 (25)

≤ ∥R−1∥2(∥Rp∗
H(T) −R−THTHp∗

H(T) +R−THTHp∗
H(T) −R−THT q̂∥2)

≤ ∥R−1∥2(∥Rp∗
H(T) −R−THTHp∗

H(T)∥2 + ∥R−THT (Hp∗
H(T) − q̂)∥2)

≤ ∥R−1∥2(∥λR−TLp∗
H(T)∥2 + ∥R−THT (Hp∗

H(T) − q̂)∥2) (26)

≤ ∥R−1∥22(λ∥L(p∗
H(T) − α)∥2 + ∥HT ∥2∥q⋆ − q̂∥2) (27)

≤ ∥R−1∥22(λ∥L∥2
∥∥∥p⋆

H(T) − α
∥∥∥
2
+ ∥HT ∥2∥q⋆ − q̂∥2), (28)

where (25) is due to contracting property of projection operator onto closed convex sets, (26)
is because HTH = RTR− λL, and (27) follows from Hp⋆

H(T) = q⋆ and Lα = 0. Then, by
using ℓ1 − ℓ2 norm inequality, we can simply write following inequalities

TV(p⋆
H(T), ∥p̂H(T)) =

1

2
||p∗

H(T) − ∥p̂H(T)||1

≤
√
|H(T)|
2

||p∗
H(T) − ∥p̂H(T)||2

≤
√
|H(T)|
2

∥R−1∥22(λ∥L∥2
∥∥∥p⋆

H(T) − α
∥∥∥
2
+ ∥HT ∥2∥q⋆ − q̂∥2)

≤ λ

2

√
|H(T)|∥R−1∥22∥L∥2

∥∥∥p⋆
H(T) − α

∥∥∥
2
+

√
|H(T)|
2

∥R−1∥22∥HT ∥2∥q⋆ − q̂∥2

≤ λ

2

√
|H(T)|∥R−1∥22∥L∥2

∥∥∥p⋆
H(T) − α

∥∥∥
2
+

√
|H(T)|
2

∥R−1∥22∥HT ∥2∥q⋆ − q̂∥1

≤ λ

2

√
|H(T)|∥R−1∥22∥L∥2

∥∥∥p⋆
H(T) − α

∥∥∥
2
+

1√
2
|T ||H(T)|∥R−1∥22∥q⋆ − q̂∥1.

Lastly, we use (21) to bound ∥q⋆ − q̂∥1 and complete the proof.

C Additional Simulations and Experimental Details

C.1 Simulations for d = 1

We provide simulation results for following group of user distributions: uniform, Gaussian, a
mixture of 2 Gaussians, and a mixture of 3 Gaussians. We also present simulation results for
varying amount of noises in 2 different noise models that we defined in Section 6.

Figure 17-20 show the relationship between the number of hyperplanes, nh, and the error
in recovered mass in the partition H(T) while varying nh ∈ {1, . . . , 10}, as well as the
relationship between the number of people asked per query, np, and the error, while varying
np ∈ {102, 103, 104, 105}, under the four user distributions and different noise levels. Our
analysis demonstrates that the recovery gets better as the number of users increases. It is
important to note that as the number of pairs, (equivalently, the number of hyperplanes)
increases, the size of p also increases, which leads to an expected increase in the total variation
(TV).

33

102 103 104 105

no. people per pair (np)

0.00

0.05

0.10

0.15
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

102 103 104 105

no. people per pair (np)

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.00

0.05

0.10

0.15

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless
Bern(0.01)

Bern(0.02)
Bern(0.05)

Sigmoid(c = 300)
Sigmoid(c = 500)

Figure 17: TV(p⋆
H(T), p̂H(T)) and W1(p

⋆
H(T), p̂H(T)) for uniform user distribution in 1D.

102 103 104 105

no. people per pair (np)

0.00

0.05

0.10

0.15

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

102 103 104 105

no. people per pair (np)

10−3

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.00

0.05

0.10

0.15

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless
Bern(0.01)

Bern(0.02)
Bern(0.05)

Sigmoid(c = 300)
Sigmoid(c = 500)

Figure 18: TV(p⋆
H(T), p̂H(T)) and W1(p

⋆
H(T), p̂H(T)) for Gaussian user distribution in 1D.

C.2 Construction of H in dimensions d ≥ 2

Unlike 1D setting, the algorithmic construction of binary matrix H is not straightforward in
dimensions d ≥ 2. We need to figure out which polytopes, i.e., regions, are on the left side of a
given hyperplane. We recall that these polytopes are defined by the halfspaces induced by the
bisecting hyperplanes of item pairs in T . Hence, our problem can be formally described as
follows: Given a set of halfspaces Hs = {a⊤

ijx+ bij < 0 : hij = a⊤
ijx+ bij = 0, i < j}, where

hij is the bisecting hyperplanes of pair (xi,xj) ∈ T , we want to find all polytopes in H(T)
that are in the halfspace hs, for each hs ∈ Hs. To simplify our analysis, we define a bounding
box [−1, 1]d, so that we can only look at the polytopes within this box and avoid unbounded
polytopes. For simplicity, we use the vector [aij bij] to represent a halfspace.

Let Bs denote the set of halfspaces that defines the bounding box [−1, 1]d. Let Pt denote the
set of polytopes that we have discovered. Let Hu

s denote the set of halfspaces we have not
explored yet. Our algorithm works as follows:
Pt ← {Bs}
for hs ∈ Hs \Ho

s do
for pt ∈ Pt do

if hs intersects with pt then
plt ← pt ∪ {hs}
prt ← pt ∪ {−hs}
Pt ← Pt \ pt

34

102 103 104 105

no. people per pair (np)

0.00

0.05

0.10

0.15
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

102 103 104 105

no. people per pair (np)

10−3

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.00

0.05

0.10

0.15

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−3

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless
Bern(0.01)

Bern(0.02)
Bern(0.05)

Sigmoid(c = 300)
Sigmoid(c = 500)

Figure 19: TV(p⋆
H(T), p̂H(T)) and W1(p

⋆
H(T), p̂H(T)) for a mixture of 2 Gaussians user distri-

bution in 1D.

102 103 104 105

no. people per pair (np)

0.00

0.05

0.10

0.15

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

102 103 104 105

no. people per pair (np)

10−3

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.00

0.05

0.10

0.15

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−3

10−2

10−1

W
1(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless
Bern(0.01)

Bern(0.02)
Bern(0.05)

Sigmoid(c = 300)
Sigmoid(c = 500)

Figure 20: TV(p⋆
H(T), p̂H(T)) and W1(p

⋆
H(T), p̂H(T)) for a mixture of 3 Gaussians user distri-

bution in 1D.

Pt ← Pt ∪ {plt, prt}
end if

end for
end for

To check if hs intersects with pt, we first assume that hs splits pt into two polytopes, namely,
plt := pt ∪ {hs} and prt := pt ∪ {−hs}. If plt or prt is degenerate, the assumption does not hold.
Therefore hs does not intersect with pt. To verify whether plt or prt is degenerate, we check
whether they have a Chebyshev center, which can be found by solving the following linear
program twice:

max
y,r

r

subject to aT
i y + ||ai||r ≤ bi, ∀i ∈ [|pt|+ 1]

where [ai bi] is the ith halfspace in plt(or prt) and y is the Chebyshev center (when solved).
If the two linear programs have (bounded) solutions and y is in pt, we can say that plt and
prt have Chebyshev centers. Consequently, hs intersects with pt. Otherwise, we can conclude
that hs does not intersect with pt. To determine the position of any polytope with respect to
hyperlanes (halfspaces), we check whether the Chebyshev center of that polytope is on the left

35

or right of the hyperplane (is in the halfspace).

C.3 Simulations for d ≥ 2

We first present the results with varying regularization parameter λ. Figure 21 and 22
present the behavior of TV and WG under the four user distributions while we vary λ when
np = 10, 000, m = 5, nh = 10, and d = 2. No noise model is introduced in this set of simulation.
Four different colored lines in Figures refer to the four different objectives we used. Least
Square + Graph means that the objective is least square with graph regularization; Least
Square + L1 means that the objective is least square with ℓ1 regularization, Least Square +
L2 means that the objective is least square with ℓ2 regularization, and KL means that the
objective is the KL divergence of q̂ from Hp, DKL(q̂,Hp), where the solution is maximum
likelihood estimate.

10−610−410−2 100 102

(λ)

10−1

100

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

10−610−410−2 100 102

(λ)

10−1

100

TV
(p̂
H

(T
),

p
? H

(T
))

(b)

10−610−410−2 100 102

(λ)

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

10−610−410−2 100 102

(λ)

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

TV
(p̂
H

(T
),

p
? H

(T
))

(d)

Least Square + Graph Least Square + L1 Least Square + L2 KL

Figure 21: TV(p⋆
H(T), p̂H(T)) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of

3 Gaussians user distribution while varying the regularization parameter λ.

10−610−410−2 100 102

(λ)

10−2

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(a)

10−610−410−2 100 102

(λ)

10−2

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

10−610−410−2 100 102

(λ)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(c)

10−610−410−2 100 102

(λ)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Least Square + Graph Least Square + L1 Least Square + L2 KL

Figure 22: WG(p
⋆
H(T), p̂H(T)) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of

3 Gaussians user distribution while varying the regularization parameter λ.

We also present the behavior of TV and WG when we use a different formulation of the
optimization problem, where the regularization term in the original optimization is the sole
objective, and ||Hp− q̂||22 ≤ ε (DKL(q̂,Hp) ≤ ε) is an additional constraint. We set ε = 10−5

in simulations. Figure 23 and 24 present the results with the new formulation of the
optimization problem under the same setting as above.

In the subsequent simulation, we fix λ = 1. We now provide simulation results for following
group of users distributions: uniform, Gaussian, a mixture of 2 Gaussians, and a mixture of
3 Gaussians. We also present simulations results for varying amount of noises in both noise
models. Figure 25-28 show the relationship between the number of hyperplanes, nh, and the
error in recovered mass in the partition H(T), as well as the relationship between the number

36

10−610−410−2 100 102

(λ)

10−1

100
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

10−610−410−2 100 102

(λ)

10−1

100

TV
(p̂
H

(T
),

p
? H

(T
))

(b)

10−610−410−2 100 102

(λ)

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

10−610−410−2 100 102

(λ)

10−1

100

TV
(p̂
H

(T
),

p
? H

(T
))

(d)
Graph + Least Square Constraint
L1 + Least Square Constraint

L2 + Least Square Constraint
Graph + KL Constraint

L1 + KL Constraint L2 + KL Constraint

Figure 23: TV(p⋆
H(T), p̂H(T)) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of

3 Gaussians user distribution while varying the regularization parameter λ.

10−610−410−2 100 102

(λ)

10−2

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(a)

10−610−410−2 100 102

(λ)

10−2

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

10−610−410−2 100 102

(λ)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(c)

10−610−410−2 100 102

(λ)

10−2

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)
Graph + Least Square Constraint
L1 + Least Square Constraint

L2 + Least Square Constraint
Graph + KL Constraint

L1 + KL Constraint L2 + KL Constraint

Figure 24: WG(p
⋆
H(T), p̂H(T)) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of

3 Gaussians user distribution while varying the regularization parameter λ.

of people asked per query, np, and the error for d = 2, with the four user distributions and
different noise models.

101 102 103 104

no. people per pair (np)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

101 102 103 104

no. people per pair (np)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 25: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for uniform user distribution in 2D.

37

101 102 103 104

no. people per pair (np)

0.0

0.2

0.4
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

101 102 103 104

no. people per pair (np)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 26: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for Gaussian user distribution in 2D.

101 102 103 104

no. people per pair (np)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

101 102 103 104

no. people per pair (np)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 27: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for a mixture of 2 Gaussian user distribution in

2D.

101 102 103 104

no. people per pair (np)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

101 102 103 104

no. people per pair (np)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 28: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for a mixture of 3 Gaussian user distribution in

2D.

Additionally, Figure 29- 32 show the relationship between the feature dimension d and the
error in recovered mass in the partition H(T).

38

2 3 4 5 6
no. dimensions (d)

0.0

0.1

0.2

0.3

0.4

0.5
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 29: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for uniform user distribution in 2D with varying

d.

2 3 4 5 6
no. dimensions (d)

0.0

0.1

0.2

0.3

0.4

0.5

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 30: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for Gaussian user distribution in 2D with

varying d.

2 3 4 5 6
no. dimensions (d)

0.0

0.1

0.2

0.3

0.4

0.5

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

10−1

6× 10−2

2× 10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 31: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for a mixture of 2 Gaussian user distribution in

2D with varying d.

Figure 33- 36 provide simulation results in terms of WG using all optimization methods while
varying the number of people per pair, np, under the four user distributions with d = 2 and
nh = 5, and no noise model introduced.

39

2 3 4 5 6
no. dimensions (d)

0.0

0.1

0.2

0.3

0.4

0.5
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

10−1

4× 10−2

6× 10−2

2× 10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 32: TV(p⋆
H(T), p̂H(T)) and WG(p

⋆
H(T), p̂H(T)) for a mixture of 3 Gaussian user distribution in

2D with varying d.

Figure 33: WG(p
⋆
H(T), p̂H(T)) for uniform user distribution in 2D with varying np using all optimization

methods.

Figure 34: WG(p
⋆
H(T), p̂H(T)) for Gaussian user distribution in 2D with varying np using all optimiza-

tion methods.

Figure 35: WG(p
⋆
H(T), p̂H(T)) for a mixture of 2 Gaussian user distribution in 2D with varying np

using all optimization methods.

Lastly, Figure 37- 40 illustrate simulation results in terms of WG using ordinary least
square, least square with graph, ℓ1, and ℓ2 regularizations, and EM algorithm (see below for
implementation details) in [LB14] with K ∈ {2, 3, 4, 5, 6}. We vary the number of people
per pair, np, under the four user distributions with d = 2 and nh = 5, and no noise model

40

Figure 36: WG(p
⋆
H(T), p̂H(T)) for a mixture of 3 Gaussian user distribution in 2D with varying np

using all optimization methods.

introduced.

EM algorithm described in [LB14]: We implemented the EM algorithm described in
[LB14], that learns a mixture of Mallows model, to compare the performance of our method
and Mallows model-based method. They model the mixture of Mallows model as

p(r) =
K∑
k=1

πk
1

Z
ϕ
d(r,σk)
k

where K is the number of components, πk is the weight parameter for the k-th component, ϕk

is the dispersion parameter of the k-th component, r is the consensus ranking parameter of
the k-th component, and Z is a normalization constant.

In the E-step, the algorithm samples ranking from the mixture according to users’ preferences
and the parameters for each component. Then, in the M-step, the algorithm updates the
parameters accordingly. Specifically, it updates the dispersion parameter using gradient ascent.
Therefore, the algorithm takes the following hyperparameters: the number of components K,
the number of ranking samples generated for each user in the E-step, the learning rate and
the number of steps for the gradient ascent. In all of our experiments, we vary K from 2 to 6
and fix the number of ranking samples per user to be 10, the learning rate for gradient ascent
to be 10−8, and the number of steps for gradient ascent to be 10. We end the EM when the
consensus ranking for each component at the current step is equal to the one from the previous
step.

We begin by generating all rankings that are possible under the ideal point model to determine
the mass on polytope regions via the mixture of Mallows model. For each of the region,
we assume there exists a user preference point. We find the ranking induced by that point
according to the ideal point model. Then, we compare rankings we found for each region with
the consensus rankings in the mixture of Mallows model. If the consensus ranking for the
j-th component matches the ranking induced by the preference point in the i-th region, the
probability mass for the i-th region is assigned to be the weight for the j-th component in the
mixture of Mallows. It is possible that none of the rankings induced by the preference points
in these regions matches the consensus rankings in the mixture of Mallows model. In such a
case, we assign the weight for the j-th component as the probability mass of the region whose
ranking is closest to the consensus ranking of the j-th component, measured by Kendall’s tau
distance.

Computation runtime: We conduct experiments to demonstrate how the optimization
runtime varies while we change the dimension of our dataset. It can be seen that the convex
optimization solver is able to compute the solution well under 1 second for the number of

41

101 102 103 104

no. people per pair (np)

10−1

100
W
G(

p̂
H

(T
),

p
? H

(T
))

KL
Least Square
Least Square + Graph
Least Square + L1
Least Square + L2
Lu and Boutilier (K = 2)
Lu and Boutilier (K = 3)
Lu and Boutilier (K = 4)
Lu and Boutilier (K = 5)
Lu and Boutilier (K = 6)

Figure 37: WG(p
⋆
H(T), p̂H(T)) for uniform user distribution in 2D with varying np using least square

with out regularization, least square with graph, ℓ1, and ℓ2 regularization, and EM algorithm of [LM18]
with K ∈ {2, 3, 4, 5, 6}.

101 102 103 104

no. people per pair (np)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

KL
Least Square
Least Square + Graph
Least Square + L1
Least Square + L2
Lu and Boutilier (K = 2)
Lu and Boutilier (K = 3)
Lu and Boutilier (K = 4)
Lu and Boutilier (K = 5)
Lu and Boutilier (K = 6)

Figure 38: WG(p
⋆
H(T), p̂H(T)) for Gaussian user distribution in 2D with varying np using least square

with out regularization, least square with graph, ℓ1, and ℓ2 regularization, and EM algorithm of [LM18]
with K ∈ {2, 3, 4, 5, 6}.

101 102 103 104

no. people per pair (np)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

KL
Least Square
Least Square + Graph
Least Square + L1
Least Square + L2
Lu and Boutilier (K = 2)
Lu and Boutilier (K = 3)
Lu and Boutilier (K = 4)
Lu and Boutilier (K = 5)
Lu and Boutilier (K = 6)

Figure 39: WG(p
⋆
H(T), p̂H(T)) for a mixture of 2 Gaussian user distribution in 2D with varying np

using least square with out regularization, least square with graph, ℓ1, and ℓ2 regularization, and EM
algorithm of [LM18] with K ∈ {2, 3, 4, 5, 6}.

101 102 103 104

no. people per pair (np)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

KL
Least Square
Least Square + Graph
Least Square + L1
Least Square + L2
Lu and Boutilier (K = 2)
Lu and Boutilier (K = 3)
Lu and Boutilier (K = 4)
Lu and Boutilier (K = 5)
Lu and Boutilier (K = 6)

Figure 40: WG(p
⋆
H(T), p̂H(T)) for a mixture of 3 Gaussian user distribution in 2D with varying np

using least square with out regularization, least square with graph, ℓ1, and ℓ2 regularization, and EM
algorithm in [LM18] with K ∈ {2, 3, 4, 5, 6}.

dimensions ranging from 2 to 5.

42

dimension time (in seconds)
2 0.1472 ± 0.1284
3 0.2084 ± 0.3547
4 0.2034 ± 0.3984
5 0.1150 ± 0.2596

Table 2: Average CVX runtime ± standard deviation for each dimension. The simulations are
conducted on AWS EC2 c5.metal instance, with 96 vCPU, 192 GiB or memory. The solver
used with CVXPY is ECOS. The underlying user distribution is mixture of 3 Gaussians. We
vary d from 2 to 5. For the same d, we use 10 different initialization of users and 10 different
initialization of items. We randomly selected 5 out of the 10 possible hyperplanes, where each
is queried with 10,000 users.

Figure 41: CVX runtime for each dimension (complementary to the Table 2).

C.4 Zappos

Data Collection via Crowdsourcing: We bootstrap 10%, 20%, 30%, 40%, 50% of all workers,
repeating the process 100 times for each percentage. Then, we use answers to all possible
queries from these workers to estimate the true mass with nh = 5 and nh = 10. We create
a global bin (initialized to 0) whose size equals to the number of regions formed by the
hyperplanes. Each worker has its own local bin (initialized to 0) that has the same size as
the global bin. For each pairwise comparison query, a worker can only be on one side of the
corresponding hyperplane. Consider all polytopes on the side of the hyperplane related to
worker’s answer. We increase the corresponding entries of these polytopes in the bin by 1.
After we examine all queries, a set of entries has the maximum value among all entries in the
bin. Ideally, this set has a cardinality of 1. However, due to noises and worker’s inconsistency,
it is possible for the cardinality to be greater than 1. We increase the corresponding entries of
this set in the global bin by 1

cardinality of the set . After we examine all workers we bootstrapped,
we normalize the global bin and obtain a probability vector, which is our estimate of the p⋆.

Figure 42 and 43 illustrate the p⋆ we estimated via bootstrapping. It can be seen that the
true distribution p⋆ that we estimated is stable across different bootstrap settings.

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(a) 10%

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(b) 20%

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(c) 30%

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(d) 40%

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(e) 50%

Figure 42: p⋆ obtained via bootstrap (a) 10% (b) 20% (c) 30% (d) 40% (e) 50% of all crowdworkers
when nh = 5.
We also present p̂ that we obtain via our method. We first use 20% of crowdworkers to estimate

43

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5
P

ro
ba

bi
lit

y

(a) 10%

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(b) 20%

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(c) 30%

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(d) 40%

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(e) 50%

Figure 43: p⋆ obtained via bootstrap (a) 10% (b) 20% (c) 30% (d) 40% (e) 50% of all crowdworkers
when nh = 10.

p⋆. Then, use the remaining 80% of crowdworkers to answer the pairwise comparisons and
estimate p̂ using our method. We shuffle the remaining 80% of crowdworkers 100 times to
obtain 100 different q̂ and hence 100 different p̂. We repeat the above process 5 times (each
time with different 20% of crowdworkers to estimate p⋆) for both nh = 5 and nh = 10. The
results are presented in Figure 44 and 45. The bounds for p⋆ are presented in Figure 46 and
47 for nh = 5 and nh = 10, respectively.

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(a) run 1

p?H(T)

p̂H(T)

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(b) run 2

p?H(T)

p̂H(T)

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(c) run 3

p?H(T)

p̂H(T)

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(d) run 4

p?H(T)

p̂H(T)

0 5 10 15
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(e) run 5

p?H(T)

p̂H(T)

Figure 44: p⋆ obtained using 20% of crowdworkers and p̂ obtained using the remaining 80% of the
crowdworkers 100 times. Each of the (a)-(e) uses different set of 20% of all crowdworkers to obtain p⋆,
when nh = 5.

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(a) run 1

p?H(T)

p̂H(T)

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(b) run 2

p?H(T)

p̂H(T)

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(c) run 3

p?H(T)

p̂H(T)

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(d) run 4

p?H(T)

p̂H(T)

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(e) run 5

p?H(T)

p̂H(T)

Figure 45: p⋆ obtained using 20% of crowdworkers and p̂ obtained using the remaining 80% of the
crowdworkers 100 times. Each of the (a)-(e) uses different set of 20% of all crowdworkers to obtain p⋆,
when nh = 10.

0 5 10 15
region ID

0.0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(a) run 1

0 5 10 15
region ID

0.0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(b) run 2

0 5 10 15
region ID

0.0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(c) run 3

0 5 10 15
region ID

0.0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(d) run 4

0 5 10 15
region ID

0.0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(e) run 5

p?H(T) upper bound of p?H(T) lower bound of p?H(T)

Figure 46: Upper and lower bound for p⋆ when nh = 5.
Figure 48 shows the TV and WG between p⋆ and p̂ while we vary nh from 1 to 10.

44

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5
P

ro
ba

bi
lit

y

(a) run 1

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(b) run 2

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(c) run 3

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(d) run 4

0 20 40
region ID

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

(e) run 5

p?H(T) upper bound of p?H(T) lower bound of p?H(T)

Figure 47: Upper and lower bound for p⋆ when nh = 10.

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

0.6

0.8

1.0

T
V

(p̂
H

(T
),

p
? H

(T
))

(a)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

0.6

0.8

1.0

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Figure 48: TV and WG when we vary nh.

Figure 49 illustrates the probability mass recovered by our algorithm and Lu and Boutilier,
with K ∈ {2, 3, 4, 5, 6}.

0 10 20 30 40
region ID

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

(a)

0 10 20 30 40
region ID

(b)

0 10 20 30 40
region ID

(c)

0 10 20 30 40
region ID

(d)

0 10 20 30 40
region ID

(e)

0 10 20 30 40
region ID

(f)
Lu and Boutilier p̂H(T) (Ours) p?H(T)

Figure 49: (a)-(e) Our p̂ and the probability mass recovered by Lu and Boutilier, with K = {2, 3, 4, 5, 6},
respectively. (f) Upper and lower bound for p⋆

Lastly, Figure 50-59 illustrate the polytopes formed by the hyperplanes as well as p⋆ and p̂
while we vary nh from 1 to 10.

45

Figure 50: (a) p⋆ and p̂ recovered by our algorithm when nh = 1. (b) regions formed by 1 hyperplane.
The numbers in each region corresponds to the region ID.

Figure 51: (a) p⋆ and p̂ recovered by our algorithm when nh = 2. (b) regions formed by the 2
hyperplanes. The numbers in each region corresponds to the region ID.

46

Figure 52: (a) p⋆ and p̂ recovered by our algorithm when nh = 3. (b) regions formed by the 3
hyperplanes. The numbers in each region corresponds to the region ID.

Figure 53: (a) p⋆ and p̂ recovered by our algorithm when nh = 4. (b) regions formed by the 4
hyperplanes. The numbers in each region corresponds to the region ID.

47

Figure 54: (a) p⋆ and p̂ recovered by our algorithm when nh = 5. (b) regions formed by the 5
hyperplanes. The numbers in each region corresponds to the region ID.

Figure 55: (a) p⋆ and p̂ recovered by our algorithm when nh = 6. (b) regions formed by the 6
hyperplanes. The numbers in each region corresponds to the region ID.

48

Figure 56: (a) p⋆ and p̂ recovered by our algorithm when nh = 7. (b) regions formed by the 7
hyperplanes. The numbers in each region corresponds to the region ID.

Figure 57: (a) p⋆ and p̂ recovered by our algorithm when nh = 8. (b) regions formed by the 8
hyperplanes. The numbers in each region corresponds to the region ID.

49

Figure 58: (a) p⋆ and p̂ recovered by our algorithm when nh = 9. (b) regions formed by the 9
hyperplanes. The numbers in each region corresponds to the region ID.

Figure 59: (a) p⋆ and p̂ recovered by our algorithm when nh = 10. (b) regions formed by the 10
hyperplanes. The numbers in each region corresponds to the region ID.

C.4.1 Movies

Figure 60 and 61 illustrates the probability mass recovered by our algorithm and EM algorithm
in [LB14], with K ∈ {2, 3, 4, 5, 6}, respectively.

0 5 10 15 20
region ID

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

(a)

0 5 10 15 20
region ID

(b)

0 5 10 15 20
region ID

(c)

0 5 10 15 20
region ID

(d)

0 5 10 15 20
region ID

(e)

0 5 10 15 20
region ID

(f)

Lu and Boutilier p̂H(T) (Ours) upper bound p?H(T) lower bound p?H(T)

Figure 60: (a)-(e) Our p̂ and the probability mass recovered by Lu and Boutilier, with K = {2, 3, 4, 5, 6},
respectively. (f) Upper and lower bound for p⋆

50

0 2 4 6
region ID

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty

(a)

0 2 4 6
region ID

(b)

0 2 4 6
region ID

(c)

0 2 4 6
region ID

(d)

0 2 4 6
region ID

(e)

0 2 4 6
region ID

(f)

Lu and Boutilier p̂H(T) (Ours) upper bound p?H(T) lower bound p?H(T)

Figure 61: (a)-(e) Our p̂ and the probability mass recovered by Lu and Boutilier, with K = {2, 3, 4, 5, 6},
respectively. (f) Upper and lower bound for p⋆

51

	Introduction
	Problem Setup
	Related Works
	One Dimensional Setting
	Higher Dimensional Settings
	Experimental Results
	Zappos
	Movies

	Conclusions and Future Work
	Limitations
	Proofs
	Proof of Theorem 4.1
	Proof of Proposition 2
	Sparsity
	Proof of Proposition 5
	Graph Regularization
	Proof of Theorem 5.2

	Additional Simulations and Experimental Details
	Simulations for d = 1
	Construction of H in dimensions d2
	Simulations for d2
	Zappos
	Movies

