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Abstract
We propose a novel, practical, simple, and com-
putationally efficient active querying algorithm
for crowdsourced clustering that does not require
knowledge of unknown problem parameters. We
show that our algorithm succeeds in recovering
the clusters when the crowdworkers provide an-
swers with an error probability less than 1/2 and
provide sample complexity bounds on the number
of queries made by our algorithm to guarantee
successful clustering. While the bounds depend
on the error probabilities, the algorithm itself does
not require this knowledge. In addition to the the-
oretical guarantees, we implement and deploy the
proposed algorithm on a real crowdsourcing plat-
form to characterize its performance in real-world
settings.

1. Introduction
Crowdsourcing, which refers to using a crowd of poten-
tially non-expert humans to obtain information useful for
downstream tasks, has become one of the most popular
ways of collecting labeled datasets for supervised learning
tasks (Sorokin & Forsyth, 2008; Raykar et al., 2010). There
is an abundant amount of data, e.g., billions of images and
texts, that can be readily scraped from the internet. How-
ever, most of these datasets are unlabeled, and it is unclear
what structures might exist in them. Crowdsourcing can
be a very useful resource for exploring structure in such
data (Welinder et al., 2010).

We consider the problem of crowdsourced clustering – find-
ing clusters in a dataset with unlabeled items by querying
pairs of items for similarity: “Are items i and j from the
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same cluster?” Viewing the items to be clustered as nodes
in a graph whose edges have not been observed, we have
a problem of clustering a graph with an access to a noisy
oracle that can answer pairwise similarity queries.

A passive strategy for clustering in this scenario is to query
all the pairs (i.e., edges), a random subset of pairs (Vinayak
& Hassibi, 2016), or a specifically constructed subset of
pairs (Gomes et al., 2011; Ibrahim & Fu, 2021) and then
perform graph clustering. A major hick-up of such passive
strategies is that they can only recover relatively large clus-
ters. This is because the existing polynomial time graph clus-
tering algorithms can only recover clusters at least Ω(

√
n)

in size. This is related to the well-known hidden clique
problem, where the goal is to find a hidden clique of a cer-
tain size in a random graph of size n. It is currently an
open conjecture that there is no polynomial time passive
algorithm that can recover a hidden clique of size smaller
than

√
n. Active clustering, on the other hand, can poten-

tially transcend this barrier. In this paper, we study how
to cluster a set of items using these crowdsourced pairwise
comparison queries in an active manner that overcomes the
issue of recovering small clusters.

Our Contributions: We propose an active crowdsourced
clustering algorithm that does not rely on any unknown
problem parameters. It is computationally efficient, simple
to implement, and capable of recovering clusters regardless
of their sizes. We also provide an analysis of the proposed
algorithm and sample complexity bound that guarantees the
algorithm’s success in recovering all the clusters with high
probability (with failure probability decaying as 1/poly(n)).
A key observation is that when the crowdworkers are better
than random guessers (i.e., the error probability is less than
1/2), the problem of deciding whether two items, i and
j, belong to the same cluster can be recast as a problem
of inferring if the true parameter of a Bernoulli random
variable is above or below 1/2. Our algorithm is inspired
by the finite law of iterated logarithms (LIL) for multi-arm
bandits (Jamieson et al., 2014; Heckel et al., 2019). We
implement and deploy the proposed algorithm on a real
crowdsourcing platform and evaluate its performance in
the real-world settings. Based on both the theoretical and
the empirical results, we observe that the total number of
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queries made by active clustering algorithm is order-wise
better than random querying. However, the advantage of
our algorithm is most conspicuous when the datasets have
small clusters, which is a hard scenario for passive clustering
algorithms. For datasets with large clusters, which are easier
settings, passive querying strategy of randomly querying a
subset of edges followed by graph clustering can often be
query efficient in practice. To the best of our knowledge,
this is the first demonstration of active clustering algorithm
working in practice (beyond simulations). We make our
dataset publicly available and also the codebase to enable
further development and deployment of such systems.

Related Literature: Many prior works that consider the
problem of crowdsourced clustering using pairwise similar-
ity queries employ passive strategy with either a determin-
istic pattern fixed a priori (Gomes et al., 2011; Ibrahim &
Fu, 2021) or randomly chosen queries (Vinayak et al., 2014;
Vinayak & Hassibi, 2016). Another related line of work is
entity resolution in databases where the goal is to find data
records that represent the same real-world entities. There
is a rich line of work in this area (see (Wang et al., 2012;
Vesdapunt et al., 2014; Verroios & Garcia-Molina, 2015)
and the references there in) that use heuristics-based crowd-
sourcing algorithms to resolve entities. Most of these works
assume that there is a machine generated similarity matrix
between different data records and use this information to
decide which data records to query. (Mazumdar & Saha,
2017a;c) provide analysis for some of the popular heuristics
and algorithms when side information is present.

A closely related work is (Yun & Proutiere, 2014), which
focuses on the setting with fixed number of clusters of large
sizes, i.e., Θ(n), which is an easier setting for clustering.
They also assume that the number of clusters are known a
priori. The authors propose spectral clustering-based algo-
rithms and theoretically analyzed both passive and adaptive
querying strategies.

Another closely related work is (Mazumdar & Saha, 2017b),
which also considers active clustering by crowdsourcing.
The key differences from our setting are that they forbid
repeated querying of a pair of items, and they assume that
the algorithm is aware of the error probability p. Two al-
gorithms are proposed in (Mazumdar & Saha, 2017b), one
that achieves a near-optimal query complexity but is com-
putationally hard, while the other is computationally effi-
cient but with sub-optimal query complexity. In particular,
the query complexity of the computationally efficient al-
gorithm grows quadratically in the number of clusters K,
which is very costly when there are many small clusters.
Both the algorithms require the cluster sizes to be at least
Ω(log n). Furthermore, both the algorithms in (Mazumdar
& Saha, 2017b) require knowledge of the error probability p,
which makes it difficult to deploy in practical crowdsourcing

setups. Under similar assumptions of forbidden repeated
queries and assuming the knowledge of error probability
another recent work (Mukherjee et al., 2022) provides effi-
cient algorithms to recover clusters of size at Ω(k log n) for
a fixed error probability.

In contrast, we consider the setting where the error prob-
abilities are unknown and repeated querying of the same
pair of items to different crowdworkers is allowed. Our
algorithm is simple to implement, computationally efficient,
capable of recovering clusters regardless of their sizes, and
agnostic of the number of clusters and error probabilities,
while achieving near optimal (up to logarithmic factors)
query complexity. One of the key contributions of our work
is addressing how to deal with the unknown parameters,
which is essential for making the algorithm practical in real-
world settings. We demonstrate that repeating queries is in
fact practical and effective in deciding cluster memberships
by deploying our algorithm on a popular crowdsourcing
platform and running crowdsourced clustering tasks with
real crowdworkers. The goal of repeated querying in our
setting is not to drive the empirical error to 0 but instead
to guarantee that either the lower confidence bound on the
unknown true parameter is above or the upper confidence is
below 1/2.

2. Problem Setup
In this section we describe the problem setup, the model and
the assumptions. Consider n items that belong to K disjoint
clusters. Consider a pool of crowdworkers who provide
noisy answers to pairwise queries of the type: “Are items i
and j from the same cluster?” Let Query(i, j) denote such
a pairwise query. Let Xij(s) denote the answer provided by
crowdworker s to Query(i, j). In particular, Xij(s) = 1 if
the answer to Query(i, j) by worker s is “yes” andXij(s) =
0 if the answer is “no”. For any pair of items i and j, and
any positive integer m, let X̄ij(m) denote the average of m
independent answers to the Query(i, j), i.e.,

X̄ij(m) :=
1

m

m∑
s=1

Xij(s). (1)

For any item j, we use the notation cluster(j) to denote the
cluster that contains item j.

Suppose the workers were perfect, then with Θ(nK)
queries, we could assign all the items to the correct clusters.
However, the workers on crowdsourcing platforms are not
experts and hence maker errors.

Model: We consider the following two-coin model for
worker errors. When two items i and j are from the same
cluster, for all workers s,

Xij(s) =

{
1 with probability p,
0 with probability 1− p.
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When i and j are not from the same cluster, for all workers
s,

Xij(s) =

{
1 with probability q,
0 with probability 1− q.

We note that this is similar to the Stochastic Block Model
(SBM) used in analyzing graph clustering or community
detection problems (Holland et al., 1983; Condon & Karp,
2001), whereXij = 1 denotes an edge andXij = 0 denotes
no edge between two nodes i and j.

Assumptions: We assume that the answers given by differ-
ent workers are independent, i.e., Xij(s) and Xij(s

′) are
independent when s ̸= s′. We also assume that while the
workers make errors, they are better than random guessers,
i.e., 1 ≥ p > 1

2 > q ≥ 0.

3. Active Clustering Algorithm
In this section, we present the active querying algorithm
for crowdsourced clustering. The algorithm proceeds by
building clusters from scratch. Initially, we have a set of
items to be clustered. A randomly chosen item is set as its
own cluster at the beginning. We start by picking an item i
that is yet to be clustered and query it with existing clusters
to decide its membership. To decide the membership of item
i with cluster(j), an item is picked at random from cluster(j)
and the Query(i, j) is repeated with different crowdworkers
until membership of i can be established with confidence.
If it does not belong to any of the existing clusters, then
it starts a new cluster. This process continues until all the
items are clustered. The key challenge is to decide the
cluster memberships with guaranteed confidence when the
error probabilities are unknown. We propose using the finite
law of iterated logarithms (Jamieson et al., 2014) to obtain
time varying confidence bounds, which are monotonically
decreasing in time t and are valid for all t. The detailed
pseudocode for the algorithm is given in Algorithm 1.

4. Performance Guarantees
We analyze Algorithm 1 under the error model inspired by
the SBM and the assumptions described in Section 2. Let
∆ = 1

2 min{p− 1
2 ,

1
2 − q}. We can guarantee the following

performance for Algorithm 1 under the assumptions on our
model:

Theorem 4.1 (Main Theorem). Algorithm 1 succeeds
in recovering all the clusters exactly with at most
O
(
nK
∆2 log n log 1

∆

)
queries overall, with high probability.

Note that high probability here refers to an upper bound on
the probability of failure that decays as 1/poly(n). While
the bound on the query complexity is a function of the
problem parameters, K, p and q, the algorithm itself does
not need to know these parameters.

Algorithm 1 Active Crowdclustering by Crowdsourcing;
withou the knowledge of p and q

1: Input: set of items to be clustered V , ζ ∈ (0, 1), δ ∈
(0, log(1 + ζ)/e)

2: Pick i ∈ V randomly
3: Initialize C = {C1 := {i}}
4: V ← V \ {i}
5: while V ̸= ∅ do
6: Pick v ∈ V randomly
7: for k ∈ [|C|] do
8: Pick u ∈ Ck randomly
9: X̄vu(0)← 0

10: for each time step t do
11: Xvu(t) ← Query(v, u) {Query to a distinct

crowdworker}
12: X̄vu(t) ← t−1

t X̄vu(t − 1) + 1
t X̄vu(t)

{Cumulative empirical average of the answers}

13: ψ(t) ← (1 +
√
ζ)

√
1+ζ
2t log

(
(1+ζ)t

δ

)
{Confidence interval}

14: if X̄uv(t)− ψ(t) > 1
2 then

15: Ck ← Ck ∪ {v} {Assign v to Ck}
16: V ← V \ {v}
17: goto Line 5
18: end if
19: if X̄uv(t) + ψ(t) < 1

2 then
20: goto Line 7 with k increments by 1 {Move to

next cluster}
21: end if
22: end for
23: end for
24: if v is not assigned to Ck,∀k then
25: C ← C ∪ {v} {Start a new cluster with v}
26: V ← V \ {v}
27: end if
28: end while

If p < 1 and q > 0, Ω
(

1
∆2

)
repetitions per query are needed

and hence Ω
(
nK
∆2

)
queries are necessary for Algorithm 1

to succeed with probability at least 3/4. Hence the upper
bound on the number of queries is optimal up to log factors.
Furthermore, the extra price that Algorithm 1 pays for not
knowing ∆ (as compared to the sample complexity if we
knew p and q) is a log

(
log b2

∆

)
term. Comparing our bounds

with the asymptotic lower bounds in (Yun & Proutiere, 2014)
and the lower bounds in (Mazumdar & Saha, 2017b), we
note that our bounds are within log factors of optimal query
complexity. In particular, for p = 1− q, the lower bound is
of the order Ω(nK∆2 ).

The following corollary provides the general version of the
main theorem,

Corollary 4.2. For any ζ ∈ (0, 1), c ≥ 3, δ = δ′

nc ∈
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(0, log (1 + ζ)/e), then with probability at least 1 − 1/n,
Algorithm 1 succeeds in recovering all the clusters exactly
and the total number of queries made is upper bounded by
O
(
nK b1

∆2 log
(

nc

b3δ′
log b2

∆

))
, where b1 = 3, b2 = (1 +

ζ)2, b3 = 1
(2(1+

√
ζ))3

.

Note that c, δ and ζ can be chosen such that the failure
probability decays as 1/poly(n) and this does not require
the knowledge of error probabilities p and q. We further
note that the choice of δ and ζ also affects the size of confi-
dence interval ψ(t) and hence the number of queries made
by Algorithm 1. The bound presented in Theorem 4.1 is
obtained by choosing c = 4 and ζ = 0.1151.

4.1. Discussion

In this section we reflect on Algorithm 1, discuss extensions,
and compare with passive querying.

4.1.1. GENERAL BOUND WITH CONFUSION MATRIX

While the main result is presented with a simple two-coin
error model where the probabilities p and q capture the
intra- and inter-cluster error probabilities respectively, the
analysis can be extended to more general setting. Let P ∈
[0, 1]n×n be the confusion matrix associated with the n
items being clustered, where each entryPij is the probability
of the answer to Query(i, j) is 1. The assumption that the
workers are better than random guessers in this general
case implies that Pij > 1/2 when i and j are from the
same cluster and Pij < 1/2 otherwise. Define ∆ij :=
|Pij − 1/2|. The proof of Theorem 4.1 can be modified
to obtain the following upper bound on the total number
of queries made by Algorithm 1 in the general case for
successfully recovering clusters with high probability,∑

i,j:{i,j}∈Ω

b1
∆2

ij

log

(
nc

b3δ
log

b2
∆ij

)
,

where Ω is the set of queries made and |Ω| ≤ nK.

4.1.2. MODIFICATIONS IN QUERYING

In Algorithm 1, to decide if item i belongs to cluster(j), a
random item j is picked as a representative from that cluster
and Query(i, j) is repeated until a decision can be made
about the membership of i. Instead of repeating Query(i, j)
with the same representative item, we could pick a random
element from cluster(j) for each repetition. For the assumed
model, there is no statistical change from our assumptions
and hence the guarantee provided by Theorem 4.1 still holds.
For the general confusion matrix case described above, care-
ful book keeping is needed as instead of E(X̄ij(t)) = Pij ,
we will have E(X̄ij(t)) = 1

t

∑t
s=1 Pij(s). In practice,

switching to different representative elements from a clus-
ter could help avoid being stuck with a bad representative

picked by chance in the beginning from cluster(j).

4.1.3. ACTIVE VS. PASSIVE QUERIES

Here we discuss the pros and cons of active querying for
crowdsourced clustering when compared to using passive
queries. Crowdsourced clustering using passive queries has
been previously approached with a two step process (Gomes
et al., 2011; Vinayak & Hassibi, 2016; Ibrahim & Fu, 2021).
In the first step, a random or a carefully designed pre-
determined subset of the

(
n
2

)
pairs of items, say ⌈r

(
n
2

)
⌉

with r ∈ (0, 1] are queried to partially fill a noisy adjacency
matrix. In the second step, a graph clustering algorithm runs
on it. We focus on computationally efficient (polynomial
time) clustering algorithms for this discussion.

• Active querying succeeds regardless of cluster sizes:
Computationally efficient graph clustering algorithms,
e.g., spectral clustering (McSherry, 2001; Rohe et al.,
2011), convex clustering algorithms (Chen et al., 2014;
Vinayak et al., 2014; Jalali et al., 2015), have a bottle-
neck in terms of the size of the smallest cluster that can
be recovered. In particular, the smallest cluster has to
be sufficiently large, i.e., at least Ω(

√
n), to be recov-

ered. This bottleneck of on the minimum cluster size
is conjectured to also be necessary for any polynomial
time graph clustering algorithm (related to the hidden
clique conjecture). Therefore, using any known com-
putationally efficient graph clustering algorithms with
passive querying can only recover clusters of size at
least Ω(

√
n). On the contrary, the sufficient condition

for exact recovery of the clusters (Theorem 4.1) using
Algorithm 1) which is computationally efficient, holds
regardless of the cluster sizes. This is also illustrated
by our experiments on real crowdsourcing platform
(see Section 6, Table 3).

• Active querying algorithm is free of model parame-
ters: For passive querying, the knowledge of p− q and
nmin, or other side information, is needed to a priori
set the number of queries to be made that can guaran-
tee the exact recovery of clusters (unless we make all(
n
2

)
queries). On the other hand, our active querying

algorithm does not require the knowledge of p, q, K
or the cluster sizes ahead of time to guarantee exact
recovery. The only assumption is that the workers are
better than random guessers (p > 1/2 > q).

• Active vs. passive querying sample complexity: The
sufficient number of queries to guarantee exact recov-
ery of clusters for our active querying algorithm is
O
(
nK
∆2 log n log 1

∆

)
, where ∆ = min{p− 1

2 ,
1
2 − q}.

Let us compare this to the state of the art sufficient
conditions for exact recovery of clusters via graph clus-
tering for SBM (see (Chen et al., 2014; Vinayak et al.,
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2014; Jalali et al., 2015) & references there in).

– When the smallest cluster is Θ(
√
n): Passive

graph clustering can guarantee exact recovery us-
ing at most O

(
n2/(p− q)2

)
random queries. In

the case of
√
n clusters of size Θ(

√
n), passive

graph clustering takes at most O
(
n2/(p− q)2

)
random queries to guarantee success while our al-
gorithm takes at most O

(
n1.5

∆2 log n log 1
∆

)
. So,

there is room for
√
n gain in sample complexity

for active clustering.
– When the smallest cluster is very large, i.e, when

all the clusters are of size Θ(n): In this case,
since K is a constant, our algorithm takes at most
O
(

n
∆2 log n log

1
∆

)
. Passive graph clustering al-

gorithms can obtain correct clustering by using
at most O

(
n(log n)2/(p− q)2

)
random queries.

So, the relative advantage of active clustering
might be limited here and might not kick in un-
til the dataset sizes are very large, depending
on the hidden constants in these bounds. From
our experiments on real crowdsourcing platform
(see Section 6, Table 2), we observe that passive
querying followed by graph clustering can pro-
vide very good clustering outcomes with much
fewer queries compared to active clustering when
the cluster sizes are large. However, the active
clustering seems to pick up more granular differ-
ences within each cluster. See Section 6.1 for
more details.

In summary, our active clustering algorithm 1 has advan-
tages in terms of being agnostic to model parameters and
that its success does not depend on a cluster size bottle-
neck. Active clustering is competitive or better than random
queries order-wise, but the advantages can be realized in
practice in the regime when the cluster sizes are small which
is a hard scenario for a passive algorithms.

We would like to emphasize that the challenge we address
in this paper concerns with how to decide a cluster member-
ship without knowing p and q. Our routine that uses time
varying confidence intervals can make the second phase
of the algorithms in (Mazumdar & Saha, 2017b) practical.
However, the initial phase in their algorithms would still
need the knowledge of error probability.

5. Simulations: Passive vs. Active Querying
Here we compare the performance of active and passive
clustering algorithms under easy and difficult settings on
simulated data. With n = 900 items to be clustered, we
consider two scenarios varying the number of clusters K⋆

with each cluster of equal size: (1) Easy case with K⋆ = 3

Table 1. VI for the clustering outcome and the total number of
queries, denoted as TQ in the column header, made after running
Algorithm 1 and passive clustering on simulated datasets.

METHOD VI ↓
(K⋆ = 3)

TQ VI ↓
(K⋆ = 30)

TQ

ACTIVE 1
(THIS PA-
PER)

0.09± 0.06
(K = 5)

41, 014 0.52± 0.07
(K = 40)

277, 370

(YUN &
PROUTIERE,
2014)
ADAPTIVE

2.74± 0.37
(K = 14)

52, 225 3.63± 0.33
(K = 24)

294, 530

(YUN &
PROUTIERE,
2014)
PASSIVE

3.41± 0.15
(K = 14)

52, 225 3.84± 0.32
(K = 13)

294, 530

K-
MEANS,
PASSIVE

0.31± 0.35
(K = 3)

41, 014 3.4± 0
(K = 1)

277, 370

(VINAYAK
ET AL.,
2014)
+KMEANS,
PASSIVE

0± 0
(K = 3)

41, 014 3.4±0 (K =
1)

277, 370

SPECTRAL,
PASSIVE

0.04± 0
(K = 3)

41, 014 3.4± 0
(K = 1)

277, 370

(VINAYAK
ET AL.,
2014)
+SPECTRAL,
PASSIVE

0.07± 0.22
(K = 3)

41, 014 3.4±0 (K =
1)

277, 370

with large cluster sizes, of the order of, Θ(n), (2) difficult
case with K⋆ = 30 with small cluster sizes around the
threshold of Θ(

√
n). To simulate crowdworkers’ answers,

we construct a confusion matrix P ∈ [0, 1]n×n for each
of the scenarios. Each entry Pij denotes the probability of
observing an edge between item i and j. We draw Pij ∼
Uniform[0.6, 0.85] if item i and j belong to the same cluster,
otherwise Pij ∼ Uniform[0.1, 0.35]. We use variation of
information (VI) (Meila, 2007) to measure the difference
between the output clustering and ground truth clustering.
Note that VI ≥ 0 and the smaller the VI the better with
VI = 0 indicating perfect match.

We run our active clustering algorithm 1 and adaptive algo-
rithm in (Yun & Proutiere, 2014). We also tried running the
active clustering algorithm in (Mazumdar & Saha, 2017b),
but it failed to run as the initial stage did not yield any clus-
ters even after search over hyper-parameters. For passive
algorithms, we ran the random query algorithm from (Yun
& Proutiere, 2014), k-means, spectral clustering (McSherry,
2001), and convex algorithms (Vinayak & Hassibi, 2016).
Each algorithm is run 10 times and the results are shown in
Table 1, and discussed below:

• In the easy setting with K = 3 clusters (large clusters),
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Table 2. The percentage of node pairs in error, variation of infor-
mation (VI) for the clustering outcome, the average number of
repetitions per query, and the total number of queries, denoted as
TQ, made after running Algorithm 1 on Dogs3 dataset run with
the help of real crowdworkers on AMT. The 2nd row shows the
best clustering result from (Vinayak & Hassibi, 2016) (in Table 4)
for the same dataset for passive clustering.

METHOD PAIR
ERR.%

VI ↓ MEAN T TQ

ACTIVE
(FROM SCRATCH)

12.5% 1.85 21.98 43, 572

PASSIVE
(VINAYAK &
HASSIBI, 2016)

20% 0.23 N/A 17,626

ACTIVE, INITIAL-
IZED
(NON-RANDOM
REPEAT)

14.27% 1.42 23.20 29, 189

ACTIVE, INITIAL-
IZED
(RANDOM RE-
PEAT)

14.14% 1.12 22.14 28, 824

the passive clustering is on par with our active cluster-
ing algorithm 1. In particular, the spectral clustering
and convex clustering algorithms obtain nearly perfect
clustering.

• In the difficult setting (small clusters), our active clus-
tering algorithm 1 outperforms all the other algorithms.
This setting is around the threshold where the passive
algorithms struggle in recovering the clusters. We also
note that the adaptive algorithm in (Yun & Proutiere,
2014) is designed to work for the easy setting where
the cluster sizes are at least Θ(n). So, it is not surpris-
ing that it does not perform well in the difficult setting.
However, both the active and passive version of the
algorithms in (Yun & Proutiere, 2014) do not perform
well in the easy setting either. This is because they rely
on estimating a homogeneous error parameter for each
block to decide a priori the number of repeated queries
to make with each cluster which affects the accuracy of
decisions of cluster memberships. This highlights the
problem of relying on problem parameters for deciding
cluster memberships.

6. Experiments Using Real Data
In this section we present experimental results using real
datasets and both synthetic and real crowdworkers.

6.1. Experiments on a real crowdsourcing platform.

For experiments with real crowdworkers, we use Amazon
Mechanical Turk ((AMT)) platform where crowdworkers

answered pairwise queries (Figure 1). The instructions we
provided is shown in Figure 3. We note that we did not
enforce the gold standard questions. We used all the data we
obtained and paid all the workers who participated regard-
less of accuracy. Histograms of worker error rates for all the
experiments with real crowdworkers is shown in Figure 2.

Figure 1. Sample of the pairwise queries displayed to the corwd-
workers on Amazon Mechanical Turk (AMT).
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Figure 2. Histograms of corwdworker error rate on AMT for Dogs3
and Birds20 datasets.

The backend and frontend for this active querying system
is implemented using Node.js, embedded Javascript, CSS
and Bootstrap. We implemented a batched version of Algo-
rithm 1 for efficiency in terms of time to run the experiments
on AMT. Instead of querying one item at a time and waiting
for its cluster membership to be decided, we maintain an
active querying batch with 30 images to be queried (until the
end where only a few items are remaining to be clustered).
We also maintain a set of yet to be queried set and a clus-
tered set. When a decision is arrived at for an image in the
active querying batch as to which cluster it belongs to or to
form a new cluster, it is moved out of the batch to clustered
set and a randomly chosen image from yet to be queried set
is added to the batch. Each crowdworker is shown 30 pairs
of images to cluster (Figure 1 shows an example of a query).

In order to avoid excessive cost by repetition of difficult to
cluster images, we set the maximum number of repetitions
to 80. If an image took more than 80 queries to decide
whether it belongs to a cluster and it happens for all the
clusters, then it is considered a difficult to cluster image
and put in a separate bucket of such hard images. We set
ζ = 0.0001, δ = 0.3 for all the experiments unless specified
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Figure 3. Sample of instructions shown for pair queries. Note that
we did not enforce the gold standard questions. We used all the
data we obtained and paid all the workers who participated in the
tasks.

otherwise.

6.1.1. EASY SETTING: LARGE CLUSTER SIZES

Dogs3 dataset (Khosla et al., 2011; Vinayak & Hassibi,
2016) has 473 dogs of 3 different breeds (see Figure 4):
Norfolk Terrier (172 images), Toy Poodle (151 images) and
Bouvier des Flanders (150 images). This dataset has larger
cluster sizes.

Figure 4. Sample images from the three clusters in the Dogs3
Dataset

We ran the following three experiments on AMT for the
Dogs3 dataset:

1. Starting from no images being clustered (referred to as
from scratch).

2. Starting from initialized clusters where we start with
the three clusters initialized with 50 images randomly
chosen from respective breeds. When querying for an
image i’s membership with a cluster(j),

(a) Choosing a random image from cluster(j) as a
representative and repeating the same query to
different crowdworkers (referred to as initialized,
non-random repeat).

(b) Picking a randomly chosen image form cluster(j)
for each repetition to different crowdworkers (re-
ferred to as initialized, random repeat).

The initialization and the order in which the images
were picked to be added to the active query batch were
the same for both the non-random and random repeat
versions.

The results are summarized in Table 2. For comparison with
passive clustering, we will refer to the results in (Vinayak &
Hassibi, 2016) for the same dataset. A total of 134 images

for from scratch, 104 images for initialized non-random
repeat and 38 images for initialized random repeat experi-
ments respectively remained as difficult to cluster in these
experiments.

Comparing the results for active from scratch and the best
passive clustering result from (Vinayak & Hassibi, 2016),
we make the following observations. The clustering out-
come for passive querying followed by graph clustering
seems to significantly outperform active querying with just
40% of the number of queries. Recall from discussions
in Section 4.1.3 that the theoretical bounds on total query
complexity for active algorithm in large cluster regime is
O
(

n
∆2 log n log

1
∆

)
which when compared to the bound of

O
(
n(log n)2/(p− q)2

)
for passive clustering is only order-

wise better marginally. The data sizes we are working with
here might be too small for such a slight advantage to get
reflected depending on the hidden constants in these bounds.
We further note that the clustering outcome from active from
scratch has overall 3 large clusters (corresponding to the
3 breeds), 5 very small clusters that pick up two groups of
poodles that look very different from the rest, two groups of
terriers that are slightly darker and those with ears pointed
when imaged, and a group of Bouvier des Flanders and 6
outliers (with only one image per cluster). So, while the
clustering outcome of Algorithm 1 overall does not match
the ground truth of three clusters very well compared to
passive querying, it does seem to capture more granular
nuances in the images.

By comparing between the results for the set up of initialized
non-random repeat and random repeat, we note that there is
not a large difference in the percentage of pairs that were in
error and the average number of repetitions made per query.
An issue that could arise when the representative of a cluster
is fixed as is the case in the non-random repeat setting, is
that if we are unlucky to pick a bad/atypical example from
the cluster as the representative, it can lead to either error
or exceeding the difficult query repeat limit. Whereas, in
the random repeat set up, this is usually ameliorated as a
random representative is chosen for each repetition. This is
also reflected in the clustering outcome where the random
repeat setting performs slightly better than that of the non-
random repeat. We note that in both the cases, if the image
being queried itself is a difficult image, then it is hard to
avoid large number of repetitions.

6.1.2. HARD SETTING: SMALL CLUSTER SIZES

Birds20 is a dataset we created using a subset of Caltech-
UCSD Birds dataset (Wah et al., 2011). It has 125 images
of birds from 20 different species: American Goldfinch (6),
Arctic Tern (5), Baltimore Oriole (7), Blue Jay (4), Cardi-
nal (10), Eared Grebe (3), Eastern Towhee (5), Fish Crow
(4), Green Jay (6), Groove Billed Ani (6), Horned Puffin
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Table 3. The percentage of node pairs in error, VI for the clustering
outcome, the average number of repetitions per query, and the total
number of queries, denoted as TQ, made after running Algorithm 1
and passive clustering on Birds20 dataset run with the help of real
crowdworkers on AMT.

METHOD PAIR
ERR.%

VI ↓ MEAN
T

TQ

ACTIVE,
FROM SCRATCH

1.69% 0.88
(K = 20)

12.34 15, 160

PASSIVE
FULL,
(7750 EDGES
×1)

15.6% 1.64 ±
0.11
(K = 6)

N/A 7, 750

PASSIVE
SUBSET REPEAT,
(5054 EDGES
×3)

18.4% 1.64 ±
0.13
(K = 11)

N/A 15, 162

(5), House Sparrow (10), Laysan Albatross (5), Least Tern
(5), Mallard (10), Pileated Woodpecker (4), Red Winged
Blackbird (10), Rufous Hummingbird (5), White Breasted
Kingfisher (10), and White Pelican (5). The number images
in each species cluster is shown in the bracket. This dataset
has very small cluster sizes and allows us to investigate
the performance of Algorithm 1 in small-cluster-regime in
practice.

We ran the following three experiments on AMT for the
Birds20 dataset:

1. Active clustering with the batched implementation of
Algorithm 1 starting from no images being clustered
(referred to as from scratch).

2. Passive querying followed by graph clustering with

(a) All
(
125
2

)
= 7750 edges queried once (referred to

as passive full).
(b) Randomly chosen subset of edges with each edge

queried thrice (referred to as passive subset re-
peat). We chose 5054 edges randomly so that with
3 repetitions it matches the total queries made in
active from scratch setting and use majority vot-
ing to get the adjacency matrix.

We ran k-means, spectral clustering (McSherry, 2001)
and improved convex algorithm (Vinayak et al., 2014)
(followed by k-means and spectral clustering) for graph
clusteirng on the passively queried adjacency matrices.
The results for these experiments with Birds20 dataset
are summarized in Table 3. For passive clustering, we
present the best results with the number of clusters that
are resolved by the respective adjacency matrices.

Comparing the outcome of Algorithm 1 (active from scratch)
with passive clustering, we make the following observations.
In this small cluster regime, active Algorithm 1 provides

much better clustering outcomes than the passive clustering.
We note that Algorithm 1 recovered 20 clusters overall. In
contrast, the adjacency matrices filled by passive full and
passive repeat could only resolve 6 and 11 clusters respec-
tively. This is due to the limitations of efficient clustering
algorithms with respect to recovering small clusters (see
Section 4.1.3).

Worker error rates, time and cost. The results presented
in this section is based on the participation of 4, 369 crowd-
workers on AMT. Our task was open to all crowdworkers
on AMT with at least 500 human intelligent tasks (HITs)
approved and with a HIT approval rate of at least 95%. The
crowdworkers took on average 5.54s and 4.6s in the Dogs3
and Birds20 experiments respectively for from scratch exper-
iments. The histogram of error rates for these experiments
are shown in Figure 2. The crowdworkers took on average
5.47s and 4.86s to answer each pairwise question for the
Dogs3 experiments for initialized with non-random repe-
tition and initialized with random repetition respectively.
Time taken per query for the passive querying experiments
on Birds20 dataset were 3.73s for the passive full and 4.07s
for the passive repeat set ups. We paid $0.30 per task which
involved 30 pairs of questions which roughly translates to
$7.20/hr (with around 5s time per pair query). We also
note that the AMT adds 40% additional fees for using their
platform.

7. Conclusion
In this work, we considered the problem of clustering a set

of items into disjoint clusters with the help of noisy crowd-
workers who can answer pairwise comparison queries of
type “Are items i and j in the same cluster?”. We proposed
a practical active clustering algorithm towards this goal and
under mild assumptions, provided bounds on query com-
plexity that guarantees the exact recovery of the clusters.
The proposed active algorithm does not need the knowledge
of any problem parameters, in particular the error prob-
abilities, number of clusters or size of the clusters. We
implemented this algorithm on a real crowdsourcing plat-
form to demonstrate its efficacy and study its performance
in the large cluster and small cluster regimes. While the
theoretical bound on the query complexity is order-wise
better for the active clustering algorithm, when the clusters
are large, passive algorithms can, in fact, provide very good
clustering outcomes with much fewer queries in practice.
The main advantage of the active clustering algorithm seems
to be in the case when there could be clusters of very small
sizes that passive clustering algorithms will fail to recover.
A hybrid approach that gets the best of both worlds would
be useful to develop, and we leave it to future work.
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